Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
eNeuro ; 11(9)2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39160071

RESUMEN

Sensory processing disruptions are a core symptom of autism spectrum disorder (ASD) and other neurological disorders. The acoustic startle response and prepulse inhibition (PPI) are common metrics used to assess disruptions in sensory processing and sensorimotor gating in clinical studies and animal models. However, often there are inconsistent findings on ASD-related PPI deficits across different studies. Here, we used a novel method for assessing changes in startle and PPI in rodents, using the Cntnap2 knock-out (KO) rat model for neurodevelopmental disorder/ASD that has consistently shown PPI disruptions in past studies. We discovered that not only sex and prepulse intensity but also the intensity of the startle stimulus profoundly impacts whether PPI deficits are evident in the Cntnap2 KO rat or not. We show that rats do not universally exhibit a PPI deficit; instead, impaired PPI is contingent on specific testing conditions. Notably, at lower startle stimulus intensities, Cntnap2 KO rats not only demonstrated intact PPI but also exhibited evidence of enhanced PPI compared with their wild-type counterparts. This finding emphasizes the importance of considering specific testing conditions when evaluating startle and PPI in the context of ASD and other neuropsychiatric conditions and might explain some of the inconsistencies between different studies.


Asunto(s)
Estimulación Acústica , Modelos Animales de Enfermedad , Inhibición Prepulso , Reflejo de Sobresalto , Animales , Inhibición Prepulso/fisiología , Masculino , Femenino , Reflejo de Sobresalto/fisiología , Proteínas del Tejido Nervioso/genética , Proteínas de la Membrana/genética , Trastorno del Espectro Autista/fisiopatología , Filtrado Sensorial/fisiología , Ratas Transgénicas , Ratas
2.
PLoS One ; 19(5): e0299380, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38748694

RESUMEN

Autism Spectrum Disorder (ASD) is a neurodevelopmental behavioral disorder characterized by social, communicative, and motor deficits. There is no single etiological cause for ASD, rather, there are various genetic and environmental factors that increase the risk for ASD. It is thought that some of these factors influence the same underlying neural mechanisms, and that an interplay of both genetic and environmental factors would better explain the pathogenesis of ASD. To better appreciate the influence of genetic-environment interaction on ASD-related behaviours, rats lacking a functional copy of the ASD-linked gene Cntnap2 were exposed to maternal immune activation (MIA) during pregnancy and assessed in adolescence and adulthood. We hypothesized that Cntnap2 deficiency interacts with poly I:C MIA to aggravate ASD-like symptoms in the offspring. In this double-hit model, we assessed attention, a core deficit in ASD due to prefrontal cortical dysfunction. We employed a well-established attentional paradigm known as the 5-choice serial reaction time task (5CSRTT). Cntnap2-/- rats exhibited greater perseverative responses which is indicative of repetitive behaviors. Additionally, rats exposed to poly I:C MIA exhibited premature responses, a marker of impulsivity. The rats exposed to both the genetic and environmental challenge displayed an increase in impulsive activity; however, this response was only elicited in the presence of an auditory distractor. This implies that exacerbated symptomatology in the double-hit model may situation-dependent and not generally expressed.


Asunto(s)
Atención , Trastorno del Espectro Autista , Modelos Animales de Enfermedad , Interacción Gen-Ambiente , Proteínas del Tejido Nervioso , Animales , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/etiología , Ratas , Femenino , Atención/fisiología , Embarazo , Proteínas del Tejido Nervioso/genética , Masculino , Proteínas de la Membrana/genética , Poli I-C , Conducta Animal , Efectos Tardíos de la Exposición Prenatal/genética
3.
Brain Behav Immun Health ; 23: 100473, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35668725

RESUMEN

Maternal infections during pregnancy are linked with an increased risk for disorders like Autism Spectrum Disorder and schizophrenia in the offspring. Although precise mechanisms are still unclear, clinical and preclinical evidence suggest a strong role for maternal immune activation (MIA) in the neurodevelopmental disruptions caused by maternal infection. Previously, studies using the Polyinosinic:Polycytidylic (Poly I:C) MIA preclinical model showed that cytokines like Interleukin 6 (Il6) are important mediators of MIA's effects. In this study, we hypothesized that Il15 may similarly act as a mediator of Poly I:C MIA, given its role in the antiviral immune response. To test this hypothesis, we induced Poly I:C MIA at gestational day 9.5 in wildtype (WT) and Il15 -/- rat dams and tested their offspring in adolescence and adulthood. Poly I:C MIA and Il15 knockout produced both independent and synergistic effects on offspring behaviour. Poly I:C MIA decreased startle reactivity in adult WT offspring but resulted in increased adolescent anxiety and decreased adult locomotor activity in Il15 -/- offspring. In addition, Poly I:C MIA led to genotype-independent effects on locomotor activity and prepulse inhibition. Finally, we showed that Il15 -/- offspring exhibit distinct phenotypes that were unrelated to Poly I:C MIA including altered startle reactivity, locomotion and signal transduction in the auditory brainstem. Overall, our findings indicate that the lack of Il15 can leave offspring either more or less susceptible to Poly I:C MIA, depending on the phenotype in question. Future studies should examine the contribution of fetal versus maternal Il15 in MIA to determine the precise developmental mechanisms underlying these changes.

4.
eNeuro ; 8(4)2021.
Artículo en Inglés | MEDLINE | ID: mdl-33789926

RESUMEN

Mammalian orienting behavior consists of coordinated movements of the eyes, head, pinnae, vibrissae, or body to attend to an external stimulus. The present study aimed to develop a novel operant task using a touch-screen system to measure spatial attention. In this task, rats were trained to nose-poke a light stimulus presented in one of three locations. The stimulus was presented more frequently in the center location to develop spatial attention bias toward the center stimulus. Changes in orienting responses were detected by measuring the animals' response accuracy and latency to stimuli at the lateral locations, following reversible unilateral chemogenetic inactivation of the superior colliculus (SC). Additionally, spontaneous turning and rotation behavior was measured using an open-field test (OFT). Our results show that right SC inactivation significantly increased the whole body turn angle in the OFT, in line with previous literature that indicated an ipsiversive orientating bias and the presence of contralateral neglect following unilateral SC lesions. In the touch screen orienting task, unilateral SC inactivation significantly increased bias toward the ipsilateral side, as measured by response frequency in various experimental conditions, and a very large left-shift of a respective psychometric function. Our results demonstrate that this novel touchscreen task is able to detect changes in spatial attention and orienting responses because of e.g. experimental manipulations or injury with very high sensitivity, while taking advantage of the touch screen technology that allows for high transferability of the task between labs and for open-source data sharing through https://www.mousebytes.ca.


Asunto(s)
Roedores , Colículos Superiores , Animales , Ratas , Vibrisas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...