Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Fish Dis ; 47(7): e13945, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38523313

RESUMEN

The extensive growth of intensive fish farming has led to a massive spread of infectious diseases. Nervous necrosis virus (NNV) is the causative agent of the viral encephalo- and retinopathy disease which has become a major threat for fish farming all over the globe. The devastating mortality rates recorded in disease outbreaks, especially when infected specimens are at early stages of development, have a high economic impact on the sector. Currently, vaccines are the most cost-effective preventing tool in the fight against viruses. Inactivated vaccines have the advantage of simplicity in their development at the same time as present the antigen in a similar manner than the natural infection in the host. Nevertheless, they usually trigger weaker immune responses needing adjuvants to boost their effectiveness. In this work, we have intraperitoneally vaccinated Senegalese sole juveniles (Solea senegalensis) with a previously designed inactivated vaccine against NNV based on binary ethylenimine (BEI), mixed or not with an oil-adjuvant. Our results demonstrated the potential activation of different immune pathways when the vaccine was administered alone compared to the oil-adjuvanted vaccine, both resulting in an equivalent partial improvement in survival following a NNV challenge. However, whilst the vaccine alone led to a significant increase in specific antibodies, in the adjuvanted version those antibodies were kept basal although with a slight improvement in their neutralization capacity. At transcriptional level, neither vaccine (adjuvanted or not) triggered the immune system activation during the vaccination period. However, after NNV infection, the BEI-inactivated vaccines alone and oil-adjuvanted both elicited the stimulation of antiviral responsive genes (rtp3, herc4), antigen presentation molecules (mhcii) and T-cell markers (cd8a) in the head-kidney. Additionally, the oil-adjuvanted vaccine appears to stimulate mediator cytokines (il6) and B-cell markers (ight and ighm). Surprisingly, when the adjuvant was administered alone, fish showed the highest survival rates concomitantly with a lack of NNV-IgM production, pointing to the possible induction of different immune pathways than the B-cell responses via antibodies by the adjuvant. Since this combined vaccine did not succeed in the full extension of protection against the pathogen, further studies should be performed focusing on unravelling the molecular mechanisms through which adjuvants trigger the immune response, both independently and when added to a vaccine antigen.


Asunto(s)
Enfermedades de los Peces , Peces Planos , Nodaviridae , Infecciones por Virus ARN , Vacunas de Productos Inactivados , Vacunas Virales , Animales , Enfermedades de los Peces/prevención & control , Enfermedades de los Peces/virología , Enfermedades de los Peces/inmunología , Peces Planos/inmunología , Peces Planos/virología , Nodaviridae/inmunología , Infecciones por Virus ARN/veterinaria , Infecciones por Virus ARN/prevención & control , Infecciones por Virus ARN/inmunología , Vacunas de Productos Inactivados/inmunología , Vacunas de Productos Inactivados/administración & dosificación , Vacunas Virales/inmunología , Vacunas Virales/administración & dosificación , Vacunación/veterinaria , Adyuvantes Inmunológicos/farmacología , Adyuvantes Inmunológicos/administración & dosificación , Adyuvantes de Vacunas/administración & dosificación
2.
J Aquat Anim Health ; 36(1): 57-69, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37787030

RESUMEN

OBJECTIVE: The nervous necrosis virus (NNV; genus Betanodavirus) is an aquatic pathogen that is responsible for a neurological disease affecting marine fish. Despite its almost worldwide distribution, global warming could favor the spread of NNV to new areas, highlighting the importance of conducting epidemiological surveys on both wild and farmed marine fish species. In this study, we assessed NNV prevalence in wild fish caught along the Galician Atlantic coast. METHODS: In total, 1277 fish were analyzed by reverse transcription real-time polymerase chain reaction. RESULT: Twenty two (1.72%) of those fish tested positive for NNV, including two species in which the pathogen had not yet been reported. CONCLUSION: The reassortant RGNNV/SJNNV (red-spotted grouper NNV/striped jack NNV) was detected in 55% of NNV-positive individuals, while the remaining 45% harbored the SJNNV-type genome. Moreover, from European Pilchard Sardina pilchardus and Atlantic Mackerel Scomber scombrus, we isolated four reassortant strains that carried amino acid mutations at key sites related to NNV-host interaction.


Asunto(s)
Lubina , Enfermedades de los Peces , Nodaviridae , Animales , Nodaviridae/genética , España/epidemiología , Mutación , Genotipo , Enfermedades de los Peces/epidemiología
3.
Pathogens ; 12(9)2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37764963

RESUMEN

The viral nervous necrosis virus (VNNV) is the causative agent of an important disease affecting fish species cultured worldwide. Early and accurate diagnosis is, at present, the most effective control and prevention tool, and molecular techniques have been strongly introduced and accepted by official organizations. Among those, real-time quantitative polymerase chain reaction (rt-qPCR) is nowadays displacing other molecular techniques. However, another PCR-based technology, droplet digital PCR (ddPCR), is on the increase. It has many advantages over qPCR, such as higher sensitivity and more reliability of the quantification. Therefore, we decided to design and validate a protocol for the diagnosis and quantification of SJ and RG type VNNV using reverse transcription-ddPCR (RT-ddPCR). We obtained an extremely low limit of detection, 10- to 100-fold lower than with RT-qPCR. Quantification by RT-ddPCR, with a dynamic range of 6.8-6.8 × 104 (SJ type) or 1.04 × 101-1.04 × 105 (RG type) cps/rctn, was more reliable than with RT-qPCR. The procedure was tested and validated in field samples, providing high clinical sensitivity and negative predictive values. In conclusion, we propose this method to substitute RT-qPCR protocols because it exceeds the expectations of qPCR in the diagnosis and quantification of VNNV.

4.
J Fish Dis ; 44(12): 2003-2012, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34460955

RESUMEN

Intensive fish farming at high densities results in a wide range of adverse consequences on fish welfare, including pathogen spreading, stress and increased mortality rates. In this work, we have assessed whether the survival of Senegalese sole infected with the nervous necrosis virus (NNV), a pathogen responsible for severe disease outbreaks, is affected by rearing density. Based on the different fish ratios per surface area (g cm-2 ) and water volume (g L-1 ), our research showed an earlier mortality onset in the tanks containing NNV-infected fish reared at medium density (MD: 0.071 g cm-2 /5 g L-1 ) and high density (HD: 0.142 g cm-2 /10 g L-1 ), as well as higher cumulative mortality values. However, transcription analysis of hsp70, gr1 and pepck genes, well-known stress biomarkers, seems to indicate that none of the challenged fish were under high stress conditions. NNV load was slightly higher both in dead and in sampled fish from MD and HD groups, and especially in the rearing water from these groups, where peaks in mortality seemed to correlate with increasing NNV load in the water. In conclusion, our results suggest that rearing NNV-infected Senegalese sole at high densities resulted in an earlier mortality onset and higher cumulative values and viral load.


Asunto(s)
Acuicultura/métodos , Enfermedades de los Peces/virología , Infecciones por Virus ARN/mortalidad , Animales , Enfermedades de los Peces/mortalidad , Peces Planos/fisiología , Nodaviridae/aislamiento & purificación , Estrés Fisiológico , Carga Viral
5.
Vaccines (Basel) ; 9(5)2021 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-34064461

RESUMEN

Nervous necrosis virus (NNV), the causative agent of viral encephalopathy and retinopathy (VER), is one of the most threatening viruses affecting marine and freshwater fish species worldwide. Senegalese sole is a promising fish species in Mediterranean aquaculture but also highly susceptible to NNV and VER outbreaks, that puts its farming at risk. The development of vaccines for aquaculture is one of best tools to prevent viral spread and sudden outbreaks, and virus inactivation is the simplest and most cost-effective method available. In this work, we have designed two inactivated vaccines based on the use of formalin or binary ethylenimine (BEI) to inactivate a reassortant NNV strain. After vaccination, the BEI-inactivated vaccine triggered the production of specific IgM-NNV antibodies and stimulated innate and adaptive immune responses at transcriptional level (rtp3, mx, mhcii and tcrb coding genes). Moreover, it partially improved survival after an NNV in vivo challenge, reducing the mid-term viral load and avoiding the down-regulation of immune response post-challenge. On the other hand, the formalin-inactivated vaccine improved the survival of fish upon infection without inducing the production of IgM-NNV antibodies and only stimulating the expression of herc4 and mhcii genes (in head-kidney and brain, respectively) during the vaccination period; this suggests that other immune-related pathways may be involved in the partial protection provoked. Although these vaccines against NNV showed encouraging results, further studies are needed to improve sole protection and to fully understand the underlying immune mechanism.

6.
Animals (Basel) ; 11(3)2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33809757

RESUMEN

The viral hemorrhagic septicemia virus (VHSV) is the causative agent of an important disease in freshwater and marine fishes. Its diagnosis officially relies on the isolation of the virus in cell culture and its identification by serological or polymerase chain reaction (PCR) methodologies. Nowadays, reverse transcription real-time quantitative PCR (RT-qPCR) is the most widely employed technique for the detection of this virus and some studies have reported the validation of RT-qPCR procedures for the detection, typing, and quantification of VHSV isolates. However, although the efficacy of this technique is not in doubt, it can be cumbersome and even impractical when it comes to processing large numbers of samples, a situation in which cross-contamination problems cannot be ruled out. In the present study, we have designed and validated a macroarray for the simultaneous detection, typing, and quantification of VHSV strains. Its analytical sensitivity (5-50 TCID50/mL), analytical specificity (intra and intergroup), efficiency (E = 100.0-101.1) and reliability (repeatability and reproducibility with CV < 5%, and standard curves with R2 < 0.95) with strains from any VHSV genotype have been widely demonstrated. The procedure is based on the 'binary multiplex RT-qPCR system (bmRT-qPCR)' previously reported by the same team, applied to arrays of 96-well PCR strip tubes plates, which can be stored at -25 °C for three months and up to one year before their use, without significant loss of efficiency.

7.
Animals (Basel) ; 11(4)2021 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-33921441

RESUMEN

The nervous necrosis virus (NNV) is a threat to fish aquaculture worldwide, especially in Mediterranean countries. Fast and accurate diagnosis is essential to control it, and viral quantification is required to predict the level of risk of new viral detections in field samples. For both, reverse transcription real-time quantitative polymerase chain reaction (RT-qPCR) is used by diagnostic laboratories. In the present study, we developed an RT-qPCR procedure for the diagnosis and simultaneous quantification of NNV isolates from any of the four genotypes. The method proved to be highly sensitive in terms of crude virus titer: 5.56-9.88 TCID50/mL (tissue culture infectious dose per mL), depending on the viral strain, and averaging 8.8 TCID50/mL or 0.08 TCID50/reaction. Other standards also yielded very low detection limits: 16.3 genome copies (cps) of purified virus per mL, 2.36 plasmid cps/mL, 7.86 in vitro synthetized RNA cps/mL, and 3.16 TCID50/mL of virus from infected tissues. The diagnostic parameters evaluated in fish samples were much higher in comparison to cell culture isolation and nested PCR. In addition, the high repeatability and reproducibility of the procedure, as well as the high coefficient of determination (R2) of all the calibration curves with any type of standard tested, ensure the high reliability of the quantification of NNV using this RT-qPCR procedure, regardless of the viral type detected and from the type of standard chosen.

8.
Animals (Basel) ; 10(12)2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33271890

RESUMEN

The viral haemorrhagic septicaemia virus (VHSV), a single-stranded negative-sense RNA novirhabdovirus affecting a wide range of marine and freshwater fish species, is a main concern for European rainbow trout (Oncorhynchus mykiss) fish farmers. Its genome is constituted by six genes, codifying five structural and one nonstructural proteins. Many studies have been carried out to determine the participation of each gene in the VHSV virulence, most of them based on genome sequence analysis and/or reverse genetics to construct specific mutants and to evaluate their virulence phenotype. In the present study, we have used a different approach with a similar aim: hypothesizing that a failure in any step of the replication cycle can reduce the virulence in vivo, we studied in depth the in vitro replication of VHSV in different cell lines, using sets of strains from different origins, with high, low and moderate levels of virulence for fish. The results demonstrated that several steps in the viral replication cycle could affect VHSV virulence in fish, including adsorption, RNA synthesis and morphogenesis (including viral release). Notably, differences among strains in any step of the replication cycle were mostly strain-specific and reflected only in part the in vivo phenotype (high and low virulent). Our data, therefore, support the need for further studies aimed to construct completely avirulent VHSV recombinants targeting a combination of genes rather than a single one in order to study the mechanisms of genes interplay and their effect on viral phenotype in vitro and in vivo.

9.
Front Microbiol ; 11: 1984, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32983011

RESUMEN

The Viral Hemorrhagic Septicemia Virus (VHSV) is an OIE notifiable pathogen widespread in the Northern Hemisphere that encompasses four genotypes and nine subtypes. In Europe, subtype Ia impairs predominantly the rainbow trout industry causing severe rates of mortality, while other VHSV genotypes and subtypes affect a number of marine and freshwater species, both farmed and wild. VHSV has repeatedly proved to be able to jump to rainbow trout from the marine reservoir, causing mortality episodes. The molecular mechanisms regulating VHSV virulence and host tropism are not fully understood, mainly due to the scarce availability of complete genome sequences and information on the virulence phenotype. With the scope of identifying in silico molecular markers for VHSV virulence, we generated an extensive dataset of 55 viral genomes and related mortality data obtained from rainbow trout experimental challenges. Using statistical association analyses that combined genetic and mortality data, we found 38 single amino acid polymorphisms scattered throughout the complete coding regions of the viral genome that were putatively involved in virulence of VHSV in trout. Specific amino acid signatures were recognized as being associated with either low or high virulence phenotypes. The phylogenetic analysis of VHSV coding regions supported the evolution toward greater virulence in rainbow trout within subtype Ia, and identified several other subtypes which may be prone to be virulent for this species. This study sheds light on the molecular basis for VHSV virulence, and provides an extensive list of putative virulence markers for their subsequent validation.

10.
Pathogens ; 9(2)2020 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-32033004

RESUMEN

Infectious pancreatic necrosis (IPN) is a disease of great concern in aquaculture, mainly among salmonid farmers, since losses in salmonid fish-mostly very young rainbow trout (Salmo gairdnery) fry and Atlantic salmon (Salmo salar) post-smolt-frequently reach 80-90% of stocks. The virus causing the typical signs of the IPN disease in salmonids, named infectious pancreatic necrosis virus (IPNV), has also been isolated from other fish species either suffering related diseases (then named IPNV-like virus) or asymptomatic; the general term aquabirnavirus is used to encompass all these viruses. Aquabirnaviruses are non-enveloped, icosahedral bisegmented dsRNA viruses, whose genome codifies five viral proteins, three of which are structural, and one of them is an RNA-dependent RNA polymerase. Due to the great importance of the disease, there have been great efforts to find a way to predict the level of virulence of IPNV isolates. The viral genome and proteins have been the main focus of research. However, to date such a reliable magic marker has not been discovered. This review describes the processes followed for decades in the attempts to discover the viral determinants of virulence, and to help the reader understand how viral components can be involved in virulence modulation in vitro and in vivo. There is also a brief description of the disease, of host defenses, and of the molecular structure and function of the virus and its viral components.

11.
J Fish Dis ; 42(2): 221-227, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30511462

RESUMEN

Betanodavirus reassortant strains (RGNNV/SJNNV) isolated from Senegalese sole harbour an SJNNV capsid featuring several changes with respect to the SJNNV-type strain, sharing three hallmark substitutions. Here, we have employed recombinant strains harbouring mutations in these positions (r20 and r20 + 247 + 270) and have demonstrated that the three substitutions affect different steps of the viral replication process. Adsorption ability and efficiency of viral attachment were only affected by substitutions in the C-terminal side of the capsid. However, the concurrent mutation in the N-terminal side seems to slightly decrease these properties, suggesting that this region could also be involved in viral binding. Differences in the intracellular and extracellular production of the mutant strains suggest that both the C-terminal and N-terminal regions of the capsid protein may be involved in the particle budding. Furthermore, viral replication in sole brain tissue of the mutant strains, and especially double- and triple-mutant strains, is clearly delayed with respect to the wt strain. These data support previous findings indicating that the C-terminal side plays a role in virulence because of a slower spread in the fish host brain and suggest that the concurrent participation of the N-terminal side is also important for viral replication in vivo.


Asunto(s)
Proteínas de la Cápside/metabolismo , Enfermedades de los Peces/virología , Nodaviridae/fisiología , Infecciones por Virus ARN/veterinaria , Virus Reordenados/fisiología , Replicación Viral/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Encéfalo/virología , Proteínas de la Cápside/genética , Línea Celular , Enfermedades de los Peces/patología , Peces Planos , Mutación , Nodaviridae/genética , Nodaviridae/patogenicidad , Infecciones por Virus ARN/virología , Virus Reordenados/genética , Virus Reordenados/patogenicidad , Virulencia
12.
Vet Res ; 49(1): 86, 2018 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-30185222

RESUMEN

Nervous necrosis virus (NNV), G. Betanodavirus, is the causative agent of viral encephalopathy and retinopathy, a disease that causes mass mortalities in a wide range of fish species. Betanodaviruses are neurotropic viruses and their replication in the susceptible fish species seems to be almost entirely restricted to nerve tissue. However, none of the cell lines used for NNV propagation has a nervous origin. In this study, first we established a protocol for the primary culture of neurons from Senegalese sole, which made it possible to further study virus-host cell interactions. Then, we compared the replication of three NNV strains with different genotypes (SJNNV, RGNNV and a RGNNV/SJNNV reassortant strain) in sole neuron primary cultures and E-11 cells. In addition, to study how two amino acid substitutions at the c-terminal of the capsid protein (positions 247 and 270) affect the binding to cell receptors, a recombinant strain was also tested. The results show that sole neural cells enabled replication of all the tested NNV strains. However, the recombinant strain shows a clearly delayed replication when compared with the wt strain. This delay was not observed in virus replicating in E-11 cells, suggesting a viral interaction with different cell receptors. The establishment of a sole primary neuronal culture protocol provides an important tool for research into betanodavirus infection in sole.


Asunto(s)
Proteínas de la Cápside/genética , Enfermedades de los Peces/virología , Peces Planos , Neuronas/virología , Nodaviridae/fisiología , Infecciones por Virus ARN/veterinaria , Replicación Viral/genética , Animales , Proteínas de la Cápside/metabolismo , Células Cultivadas/virología , Mutación , Cultivo Primario de Células/métodos , Cultivo Primario de Células/veterinaria , Infecciones por Virus ARN/virología
13.
Front Immunol ; 9: 1626, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30065724

RESUMEN

Betanodaviruses [nervous necrosis virus (NNV)] are the causative agent of the viral encephalopathy and retinopathy, a disease that affects cultured Senegalese sole (Solea senegalensis). NNV reassortants, combining genomic segments from redspotted grouper nervous necrosis virus (RGNNV) and striped jack nervous necrosis virus (SJNNV) genotypes, have been previously isolated from several fish species. The wild-type reassortant wSs160.03, isolated from Senegalese sole, has been proven to be more virulent to sole than the parental genotypes (RGNNV and SJNNV), causing 100% mortality. Mutations at amino acids 247 (serine to alanine) and 270 (serine to asparagine) in the wSs160.03 capsid protein have allowed us to obtain a mutant reassortant (rSs160.03247+270), which provokes a 40% mortality decrease. In this study, the RNA-Seq technology has been used to comparatively analyze Senegalese sole transcriptomes in two organs (head kidney and eye/brain) after infection with wild-type and mutant strains. A total of 633 genes were differentially expressed (DEGs) in animals infected with the wild-type isolate (with higher virulence), whereas 393 genes were differentially expressed in animals infected with the mutant strain (37.9% decrease in the number of DEGs). To study the biological functions of detected DEGs involved in NNV infection, a gene ontology (GO) enrichment analysis was performed. Different GO profiles were obtained in the following subclasses: (i) biological process; (ii) cellular component; and (iii) molecular function, for each viral strain tested. Immune response and proteolysis have been the predominant biological process after the infection with the wild-type isolate, whereas the infection with the mutant strain induces proteolysis in head kidney and inhibition of vasculogenesis in nervous tissue. Regarding the immune response, genes coding for proteins acting as mediators of type I IFN expression (DHX58, IRF3, IRF7) and IFN-stimulated genes (ISG15, Mx, PKR, Gig1, ISG12, IFI44, IFIT-1, to name a few) were upregulated in animals infected with the wild-type isolate, whereas no-differential expression of these genes was observed in samples inoculated with the mutant strain. The different transcriptomic profiles obtained could help to better understand the NNV pathogenesis in Senegalese sole, setting up the importance as virulence determinants of amino acids at positions 247 and 270 within the RNA2 segment.

14.
J Fish Dis ; 41(10): 1571-1578, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30028012

RESUMEN

Senegalese sole has been shown to be highly susceptible to betanodavirus infection, although virulence differences were observed between strains. To study the mechanisms involved in these differences, we have analysed the replication in brain tissue of three strains with different genotypes during 15 days after bath infection. In addition, possible portals of entry for betanodavirus into sole were investigated. The reassortant RGNNV/SJNNV and the SJNNV strain reached the brain after 1 and 2 days postinfection, respectively. Although no RGNNV replication was detected until day 3-4 postinfection, at the end of the experiment this strain yielded the highest viral load; this is in accordance with previous studies in which sole infected with the reassortant showed more acute signs and earlier mortality than the RGNNV and SJNNV strains. Differences between strains were also observed in the possible portals of entry. Thus, whereas the reassortant strain could infect sole mainly through the skin or the oral route, and, to a minor extent, through the gills, the SJNNV strain seems to enter fish only through the gills and the RGNNV strain could use all tissues indistinctly. Taken together, all these results support the hypothesis that reassortment has improved betanodavirus infectivity for sole.


Asunto(s)
Enfermedades de los Peces/virología , Peces Planos/virología , Nodaviridae/genética , Virus Reordenados/genética , Carga Viral , Animales , Encéfalo/patología , Encéfalo/virología , Susceptibilidad a Enfermedades/virología , Enfermedades de los Peces/epidemiología , Enfermedades de los Peces/mortalidad , Enfermedades de los Peces/patología , Peces Planos/anatomía & histología , Genotipo , Branquias/virología , Boca/virología , Nodaviridae/aislamiento & purificación , Nodaviridae/patogenicidad , Nodaviridae/fisiología , Infecciones por Virus ARN/epidemiología , Infecciones por Virus ARN/mortalidad , Infecciones por Virus ARN/patología , Infecciones por Virus ARN/virología , ARN Viral/genética , Virus Reordenados/aislamiento & purificación , Piel/virología , Virulencia , Internalización del Virus , Replicación Viral
15.
J Gen Virol ; 99(9): 1210-1220, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30041710

RESUMEN

Betanodaviruses have bi-segmented positive-sense RNA genomes, consisting of RNAs 1 and 2. For some members of the related genus alphanodavirus, the 3' terminal 50 nucleotides (nt) of RNA2, including a predicted stem-loop structure (3'SL), are essential for replication. We investigate the possible existence and role of a similar structure in a reassortant betanodavirus strain (RGNNV/SJNNV). In this study, we developed three recombinant strains containing nucleotide changes at positions 1408 and 1412. Predictive models showed stem-loop structures involving nt 1398-1421 of the natural reassortant whereas this structure is modified in the recombinant viruses harbouring point mutations r1408 and r1408-1412, but not in r1412. Results obtained from infectivity assays showed differences between the reference strains and the mutants in both RNA1 and RNA2 synthesis. Moreover, an imbalance between the synthesis of both segments was demonstrated, mainly with the double mutant. All these results suggest an interaction between RNA1 and the 3' non-coding regions (3'NCR) of RNA2. In addition, the significant attenuation of the virulence for Senegalese sole and the delayed replication of r1408-1412 in brain tissues may point to an interaction of RNA2 with host cellular proteins.


Asunto(s)
Peces Planos/virología , Nodaviridae/genética , Nodaviridae/patogenicidad , Infecciones por Virus ARN/veterinaria , ARN Viral/genética , Animales , Línea Celular , Mutación , Infecciones por Virus ARN/virología , Virus Reordenados
16.
Virology ; 501: 1-11, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27838422

RESUMEN

Reassortment is one of the main mechanisms of evolution in dsRNA viruses with segmented genomes. It contributes to generate genetic diversity and plays an important role in the emergence and spread of new strains with altered virulence. Natural reassorment has been demonstrated among infectious pancreatic necrosis-like viruses (genus Aquabirnavirus, Birnaviridae). In the present study, coinfections between different viral strains, and genome sequencing by the Sanger and Illumina methods were applied to analyze the frequency of reassortment of this virus in vitro, the possible mechanisms involved, and its effect on virulence. Results have demonstrated that reassortment is a cell-dependent and non-random process, probably through differential expression of the different mRNA classes in the ribosomes of a specific cell, and by specific associations between the components to construct the ribonucleoprotein (RNP) complexes and/or RNP cross-inhibition. However, the precise mechanisms involved, known in other viruses, still remain to be demonstrated in birnaviruses.


Asunto(s)
Infecciones por Birnaviridae/veterinaria , Enfermedades de los Peces/virología , Virus de la Necrosis Pancreática Infecciosa/genética , Virus de la Necrosis Pancreática Infecciosa/patogenicidad , Virus Reordenados/patogenicidad , Recombinación Genética , Animales , Secuencia de Bases , Infecciones por Birnaviridae/virología , Virus de la Necrosis Pancreática Infecciosa/fisiología , Virus Reordenados/genética , Virus Reordenados/fisiología , Virulencia
17.
Appl Microbiol Biotechnol ; 100(5): 2347-54, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26728015

RESUMEN

The accurate and fast titration of viruses is a critical step in research laboratories and biotechnology industries. Different approaches are commonly applied which either are time consuming (like the plaque and endpoint dilution assays) or do not ensure quantification of only infective particles (like quantitative real-time PCR). In the last decade, a methodology based on the analysis of infected cells by flow cytometry and fluorescence-activated cell sorting (FACS) has been reported as a fast and reliable test for the titration of some viruses. However, this technology needs expensive equipment and expert technicians to operate it. Recently, the "lab on a chip" integrated devices have brought about the miniaturization of this equipment, turning this technology into an affordable and easy-to-use alternative to traditional flow cytometry. In the present study, we have designed a microflow cytometry (µFC) procedure for the quantitation of viruses, using the infectious pancreatic necrosis virus (IPNV) as a model. The optimization of conditions and validation of the method are reported here.


Asunto(s)
Citometría de Flujo/métodos , Microfluídica/métodos , Carga Viral/métodos , Virus de la Necrosis Pancreática Infecciosa/aislamiento & purificación
18.
Appl Environ Microbiol ; 80(20): 6560-71, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25128341

RESUMEN

This report describes a viral epidemiological study of wild fish around the Gulf of Cadiz (southwestern Iberian Peninsula) and is focused on infectious pancreatic necrosis virus (IPNV), viral hemorrhagic septicemia virus (VHSV), and viral nervous necrosis virus (VNNV). One fish species (Chelon labrosus) was sampled inside the gulf, at the mouth of the San Pedro River. Another 29 were sampled, in three oceanographic campaigns, at sites around the Bay of Cadiz. The fish were processed individually and subjected to isolation in cell culture and molecular diagnosis. VHSV was not isolated from any species. Thirteen IPNV-type isolates were obtained from barracuda (Sphyraena sphyraena), axillary seabream (Pagellus acarne), common two-banded seabream (Diplodus vulgaris), common pandora (P. erythrinus), Senegal seabream (D. bellottii), and surmullet (Mullus surmuletus). Six VNNV isolates were obtained from axillary seabream, common pandora, black seabream (Spondyliosoma cantharus), red mullet (Mullet barbatus), Lusitanian toadfish (Halobatrachus didactylus), and tub gurnard (Chelidonichtys lucerna). In the river mouth, viruses were detected only after reamplification, obtaining prevalence percentages of IPNV and VNNV (44.4 and 63.0%, respectively) much higher than those observed in the oceanographic campaigns (25.7 and 19.6%, respectively). The opposite results were obtained in the case of VHSV after reamplification: 11.1% in the river mouth and 43.6% in the oceanic locations. Analyzing the results with respect to the proximity of the sampling sites to the coast, an anthropogenic influence on wild fish is suggested and discussed. The type of viruses and the presence of natural reassortants are also discussed.


Asunto(s)
Enfermedades de los Peces/virología , Peces/virología , Animales , Bahías , Monitoreo del Ambiente/métodos , Enfermedades de los Peces/epidemiología , Mar Mediterráneo , Filogenia , Reacción en Cadena de la Polimerasa , Virus/genética
19.
J Virol Methods ; 183(1): 80-5, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22484616

RESUMEN

Reverse transcription-real time polymerase chain reaction (real time RT-PCR) assay with Universal Probe Library (UPL) probes has been developed for the detection and genotyping of Chilean infectious pancreatic necrosis virus (IPNV) isolates from infected cell culture. Partial nucleotide sequences (1175 bp) of the VP2 coding region from a selection of 7 Chilean IPNV isolates showed that they clustered into two main groups strongly correlated with Genogroups 1 and 5 proposed by Blake et al. (2001), corresponding to types West Buxton (WB) and Spajarup (Sp), respectively. Based on the VP2 gene sequences of those 7 Chilean isolates and different reference IPNV strains, 2 sets of candidate primer/UPL probes (# 8 and # 117) were designed and evaluated with a total of 32 field isolates isolated from Atlantic salmon (Salmo salar), rainbow trout (Oncorhynchus mykiss) and Pacific salmon (Oncorhynchus kisutch) farms from 2006 to 2010 in Chile. The UPL probes clearly differentiated the same two major Genogroups that those recognized by sequencing analysis. Among the Chilean isolates examined, 18 yielded amplification with UPL probe # 8, and 14 with probe # 117, respectively corresponding to types Sp and WB, as demonstrated by typing by sequencing. Based on the findings reported below, it has been demonstrated that the combined real time RT-PCR protocol with UPLs approach was efficient in discriminating distinct Genogroups of IPNV cultured in fish cell lines and, therefore, recommended its use for detection and typing of IPN viruses. The study also confirmed the existence of two IPNV type strains in Chilean salmonid aquaculture.


Asunto(s)
Virus de la Necrosis Pancreática Infecciosa/clasificación , Virus de la Necrosis Pancreática Infecciosa/aislamiento & purificación , Sondas de Oligonucleótidos/genética , ARN Viral/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Virología/métodos , Animales , Chile , Enfermedades de los Peces/virología , Genotipo , Virus de la Necrosis Pancreática Infecciosa/genética , Datos de Secuencia Molecular , Oncorhynchus kisutch/virología , Oncorhynchus mykiss/virología , Salmo salar/virología , Análisis de Secuencia de ADN , Medicina Veterinaria/métodos
20.
Vet Res ; 42: 67, 2011 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-21592358

RESUMEN

The successful replication of a viral agent in a host is a complex process that often leads to a species specificity of the virus and can make interspecies transmission difficult. Despite this difficulty, natural host switch seems to have been frequent among viruses of lower vertebrates, especially fish viruses, since there are several viruses known to be able to infect a wide range of species. In the present review we will focus on well documented reports of broad host range, variations in host specificity, and host shift events hypothesized for viruses within the genera Ranavirus, Novirhabdovirus, Betanodavirus, Isavirus, and some herpesvirus.


Asunto(s)
Anfibios/virología , Virus ADN/fisiología , Peces/virología , Especificidad del Huésped , Virus ARN/fisiología , Reptiles/virología , Animales , Evolución Biológica , Virus ADN/clasificación , Virus ADN/genética , Virus ADN/patogenicidad , Enfermedades de los Peces/virología , Virus ARN/clasificación , Virus ARN/genética , Virus ARN/patogenicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...