Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 8248, 2024 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589617

RESUMEN

Characterization of the microbial activity impacts on transport and storage of hydrogen is a crucial aspect of successful Underground Hydrogen Storage (UHS). Microbes can use hydrogen for their metabolism, which can then lead to formation of biofilms. Biofilms can potentially alter the wettability of the system and, consequently, impact the flow dynamics and trapping mechanisms in the reservoir. In this study, we investigate the impact of microbial activity on wettability of the hydrogen/brine/rock system, using the captive-bubble cell experimental approach. Apparent contact angles are measured for bubbles of pure hydrogen in contact with a solid surface inside a cell filled with living brine which contains sulphate reducing microbes. To investigate the impact of surface roughness, two different solid samples are used: a "rough" Bentheimer Sandstone sample and a "smooth" pure Quartz sample. It is found that, in systems where buoyancy and interfacial forces are the main acting forces, the impact of biofilm formation on the apparent contact angle highly depends on the surface roughness. For the "rough" Bentheimer sandstone, the apparent contact angle was unchanged by biofilm formation, while for the smooth pure Quartz sample the apparent contact angle decreased significantly, making the system more water-wet. This decrease in apparent contact angle is in contrast with an earlier study present in the literature where a significant increase in contact angle due to microbial activity was reported. The wettability of the biofilm is mainly determined by the consistency of the Extracellular Polymeric Substances (EPS) which depends on the growth conditions in the system. Therefore, to determine the impact of microbial activity on the wettability during UHS will require accurate replication of the reservoir conditions including surface roughness, chemical composition of the brine, the microbial community, as well as temperature, pressure and pH-value conditions.


Asunto(s)
Hidrógeno , Cuarzo , Humectabilidad , Sales (Química)
2.
N Biotechnol ; 79: 30-38, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38040289

RESUMEN

Microbial communities have long been observed in oil reservoirs, where the subsurface conditions are major drivers shaping their structure and functions. Furthermore, anthropogenic activities such as water flooding during oil production can affect microbial activities and community compositions in oil reservoirs through the injection of recycled produced water, often associated with biocides. However, it is still unclear to what extent the introduced chemicals and microbes influence the metabolic potential of the subsurface microbiome. Here we investigated an onshore oilfield in Germany (Field A) that undergoes secondary oil production along with biocide treatment to prevent souring and microbially induced corrosion (MIC). With the integrated approach of 16 S rRNA gene amplicon and shotgun metagenomic sequencing of water-oil samples from 4 production wells and 1 injection well, we found differences in microbial community structure and metabolic functions. In the injection water samples, amplicon sequence variants (ASVs) belonging to families such as Halanaerobiaceae, Ectothiorhodospiraceae, Hydrogenophilaceae, Halobacteroidaceae, Desulfohalobiaceae, and Methanosarcinaceae were dominant, while in the production water samples, ASVs of families such as Thermotogaceae, Nitrospiraceae, Petrotogaceae, Syntrophaceae, Methanobacteriaceae, and Thermoprotei were also dominant. The metagenomic analysis of the injection water sample revealed the presence of C1-metabolism, namely, genes involved in formaldehyde oxidation. Our analysis revealed that the microbial community structure of the production water samples diverged slightly from that of injection water samples. Additionally, a metabolic potential for oxidizing the applied biocide clearly occurred in the injection water samples indicating an adaptation and buildup of degradation capacity or resistance against the added biocide.


Asunto(s)
Desinfectantes , Microbiota , Humanos , Yacimiento de Petróleo y Gas , Efectos Antropogénicos , Bacterias/metabolismo , Agua , Desinfectantes/metabolismo
3.
Sci Rep ; 13(1): 10564, 2023 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-37386256

RESUMEN

Salt caverns have been successfully used for natural gas storage globally since the 1940s and are now under consideration for hydrogen (H2) storage, which is needed in large quantities to decarbonize the economy to finally reach a net zero by 2050. Salt caverns are not sterile and H2 is a ubiquitous electron donor for microorganisms. This could entail that the injected H2 will be microbially consumed, leading to a volumetric loss and potential production of toxic H2S. However, the extent and rates of this microbial H2 consumption under high-saline cavern conditions are not yet understood. To investigate microbial consumption rates, we cultured the halophilic sulphate-reducing bacteria Desulfohalobium retbaense and the halophilic methanogen Methanocalculus halotolerans under different H2 partial pressures. Both strains consumed H2, but consumption rates slowed down significantly over time. The activity loss correlated with a significant pH increase (up to pH 9) in the media due to intense proton- and bicarbonate consumption. In the case of sulphate reduction, this pH increase led to dissolution of all produced H2S in the liquid phase. We compared these observations to a brine retrieved from a salt cavern located in Northern Germany, which was then incubated with 100% H2 over several months. We again observed a H2 loss (up to 12%) with a concurrent increase in pH of up to 8.5 especially when additional nutrients were added to the brine. Our results clearly show that sulphate-reducing microbes present in salt caverns consume H2, which will be accompanied by a significant pH increase, resulting in reduced activity over time. This potentially self-limiting process of pH increase during sulphate-reduction will be advantageous for H2 storage in low-buffering environments like salt caverns.


Asunto(s)
Alcalosis , Cuevas , Humanos , Hidrógeno , Cloruro de Sodio , Cloruro de Sodio Dietético , Solución Salina , Concentración de Iones de Hidrógeno
4.
FEMS Microbiol Ecol ; 97(12)2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34849752

RESUMEN

Fe(II) oxidation coupled to nitrate reduction is a widely observed metabolism. However, to what extent the observed Fe(II) oxidation is driven enzymatically or abiotically by metabolically produced nitrite remains puzzling. To distinguish between biotic and abiotic reactions, we cultivated the mixotrophic nitrate-reducing Fe(II)-oxidizing Acidovorax strain BoFeN1 over a wide range of temperatures and compared it to abiotic Fe(II) oxidation by nitrite at temperatures up to 60°C. The collected experimental data were subsequently analyzed through biogeochemical modeling. At 5°C, BoFeN1 cultures consumed acetate and reduced nitrate but did not significantly oxidize Fe(II). Abiotic Fe(II) oxidation by nitrite at different temperatures showed an Arrhenius-type behavior with an activation energy of 80±7 kJ/mol. Above 40°C, the kinetics of Fe(II) oxidation were abiotically driven, whereas at 30°C, where BoFeN1 can actively metabolize, the model-based interpretation strongly suggested that an enzymatic pathway was responsible for a large fraction (ca. 62%) of the oxidation. This result was reproduced even when no additional carbon source was present. Our results show that at below 30°C, i.e. at temperatures representing most natural environments, biological Fe(II) oxidation was largely responsible for overall Fe(II) oxidation, while abiotic Fe(II) oxidation by nitrite played a less important role.


Asunto(s)
Comamonadaceae , Nitritos , Compuestos Ferrosos , Nitratos , Oxidación-Reducción , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...