Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Hypertension ; 81(4): 764-775, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38226470

RESUMEN

BACKGROUND: Increased vasoreactivity due to reduced endothelial NO bioavailability is an underlying feature of cardiovascular disease, including hypertension. In small resistance arteries, declining NO enhances vascular smooth muscle (VSM) reactivity partly by enabling rapid depolarizing Ca2+-based spikes that underlie vasospasm. The endogenous NO synthase inhibitor asymmetric dimethylarginine (ADMA) is metabolized by DDAH1 (dimethylarginine dimethylaminohydrolase 1) and elevated in cardiovascular disease. We hypothesized ADMA might enable VSM spikes and vasospasm by reducing NO bioavailability, which is opposed by DDAH1 activity and L-arginine. METHODS: Rat isolated small mesenteric arteries and myogenic rat-isolated intraseptal coronary arteries (RCA) were studied using myography, VSM intracellular recording, Ca2+ imaging, and DDAH1 immunolabeling. Exogenous ADMA was used to inhibit NO synthase and a selective DDAH1 inhibitor, NG-(2-methoxyethyl) arginine, to assess the functional impact of ADMA metabolism. RESULTS: ADMA enhanced rat-isolated small mesenteric arteries vasoreactivity to the α1-adrenoceptor agonist, phenylephrine by enabling T-type voltage-gated calcium channel-dependent depolarizing spikes. However, some endothelium-dependent NO-vasorelaxation remained, which was sensitive to DDAH1-inhibition with NG-(2-methoxyethyl) arginine. In myogenically active RCA, ADMA alone stimulated depolarizing Ca2+ spikes and marked vasoconstriction, while NO vasorelaxation was abolished. DDAH1 expression was greater in rat-isolated small mesenteric arteries endothelium compared with RCA, but low in VSM of both arteries. L-arginine prevented depolarizing spikes and protected NO-vasorelaxation in rat-isolated small mesenteric artery and RCA. CONCLUSIONS: ADMA increases VSM electrical excitability enhancing vasoreactivity. Endothelial DDAH1 reduces this effect, and low levels of DDAH1 in RCAs may render them susceptible to endothelial dysfunction contributing to vasospasm, changes opposed by L-arginine.


Asunto(s)
Arginina/análogos & derivados , Enfermedades Cardiovasculares , Ratas , Animales , Vasos Coronarios/metabolismo , Arginina/farmacología , Arginina/metabolismo , Óxido Nítrico Sintasa , Amidohidrolasas/metabolismo , Óxido Nítrico/metabolismo
2.
Int J Mol Sci ; 24(14)2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37511055

RESUMEN

Discovered almost 40 years ago, the potent vasoconstrictor peptide endothelin-1 (ET-1) has a wide range of roles both physiologically and pathologically. In recent years, there has been a focus on the contribution of ET-1 to disease. This has led to the development of various ET receptor antagonists, some of which are approved for the treatment of pulmonary arterial hypertension, while clinical trials for other diseases have been numerous yet, for the most part, unsuccessful. However, given the vast physiological impact of ET-1, it is both surprising and disappointing that therapeutics targeting the ET-1 pathway remain limited. Strategies aimed at the pathways influencing the synthesis and release of ET-1 could provide new therapeutic avenues, yet research using cultured cells in vitro has had little follow up in intact ex vivo and in vivo preparations. This article summarises what is currently known about the synthesis, storage and release of ET-1 as well as the role of ET-1 in several diseases including cardiovascular diseases, COVID-19 and chronic pain. Unravelling the ET-1 pathway and identifying therapeutic targets has the potential to treat many diseases whether through disease prevention, slowing disease progression or reversing pathology.


Asunto(s)
COVID-19 , Enfermedades Cardiovasculares , Dolor Crónico , Endotelina-1 , Humanos , Enfermedades Cardiovasculares/metabolismo , COVID-19/metabolismo , Endotelina-1/metabolismo , Endotelinas , Dolor Crónico/metabolismo
3.
Front Physiol ; 14: 1108943, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36760530

RESUMEN

Background: Endothelial cell (EC) dysfunction is an early hallmark of cardiovascular disease associated with the reduced bioavailability of nitric oxide (NO) resulting in over-constriction of arteries. Despite the clear need to assess NO availability, current techniques do not reliably allow this in intact arteries. Methods: Confocal fluorescence microscopy was used to compare two NO-sensitive fluorescent dyes (NO-dyes), Cu2FL2E and DAR-4M AM, in both cell-free chambers and isolated, intact arteries. Intact rat mesenteric arteries were studied using pressure myography or en face imaging to visualize vascular smooth muscle cells (SMCs) and endothelial cells (ECs) under physiological conditions. Both NO-dyes irreversibly bind NO, so the time course of accumulated fluorescence during basal, EC-agonist (ACh, 1 µM), and NO donor (SNAP, 10 µM) responses were assessed and compared in all experimental conditions. To avoid motion artefact, we introduced the additional step of labelling the arterial elastin with AF-633 hydrazide (AF) and calculated the fluorescence ratio (FR) of NO-dye/elastin over time to provide data as FR/FR0. Results: In cell-free chambers using either Cu2FL2E or DAR-4M AM, the addition of SNAP caused a time-dependent and significant increase in fluorescence compared to baseline. Next, using pressure myography we demonstrate that both Cu2FL2E and DAR-4M AM could be loaded into arterial cells, but found each also labelled the elastin. However, despite the use of different approaches and the clear observation of NO-dye in SMCs or ECs, we were unable to measure increases in fluorescence in response to either ACh or SNAP when cells were loaded with Cu2FL2E. We then turned our attention to DAR-4M AM and observed increases in FR/FR0 following stimulation with either ACh or SNAP. The addition of each agent evoked an accumulating, time-dependent, and statistically significant increase in fluorescence within 30 min compared to time controls. These experiments were repeated in the presence of L-NAME, an NO synthase inhibitor, which blocked the increase in fluorescence on addition of ACh but not to SNAP. Conclusion: These data advance our understanding of vascular function and in the future will potentially allow us to establish whether ECs continuously release NO, even under basal conditions.

4.
Front Cardiovasc Med ; 9: 980628, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36035957

RESUMEN

Background: Adequate blood flow into coronary micro-arteries is essential for myocardial function. Here we assess the mechanisms responsible for amplifying blood flow into myogenically-contracting human and porcine intramyocardial micro-arteries ex vivo using endothelium-dependent and -independent vasodilators. Methods: Human and porcine atrial and ventricular small intramyocardial coronary arteries (IMCAs) were studied with pressure myography and imaged using confocal microscopy and serial section/3-D reconstruction EM. Results: 3D rendered ultrastructure images of human right atrial (RA-) IMCAs revealed extensive homo-and hetero-cellular contacts, including to longitudinally-arranged smooth muscle cells (l-SMCs) found between the endothelial cells (ECs) and radially-arranged medial SMCs (r-SMCs). Local and conducted vasodilatation followed focal application of bradykinin in both human and porcine RA-IMCAs, and relied on hyperpolarization of SMCs, but not nitric oxide. Bradykinin initiated asynchronous oscillations in endothelial cell Ca2+ in pressurized RA-IMCAs and, as previously shown in human RA-IMCAs, hyperpolarized porcine arteries. Immunolabelling showed small- and intermediate-conductance Ca2+-activated K+ channels (KCa) present in the endothelium of both species, and concentration-dependent vasodilation to bradykinin followed activation of these KCa channels. Extensive electrical coupling was demonstrated between r-SMCs and l-SMCs, providing an additional pathway to facilitate the well-established myoendothelial coupling. Conducted dilation was still evident in a human RA-IMCA with poor myogenic tone, and heterocellular contacts were visible in the 3D reconstructed artery. Hyperpolarization and conducted vasodilation was also observed to adenosine which, in contrast to bradykinin, was sensitive to combined block of ATP-sensitive (KATP) and inwardly rectifying (KIR) K+ channels. Conclusions: These data extend our understanding of the mechanisms that coordinate human coronary microvascular blood flow and the mechanistic overlap with porcine IMCAs. The unusual presence of l-SMCs provides an additional pathway for rapid intercellular signaling between cells of the coronary artery wall. Local and conducted vasodilation follow hyperpolarization of the ECs or SMCs, and contact-coupling between l-SMCs and r-SMCs likely facilitates this vasodilation.

5.
Cardiovasc Res ; 118(8): 1978-1992, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34173824

RESUMEN

AIMS: Coronary microvascular smooth muscle cells (SMCs) respond to luminal pressure by developing myogenic tone (MT), a process integral to the regulation of microvascular perfusion. The cellular mechanisms underlying poor myogenic reactivity in patients with heart valve disease are unknown and form the focus of this study. METHODS AND RESULTS: Intramyocardial coronary micro-arteries (IMCAs) isolated from human and pig right atrial (RA) appendage and left ventricular (LV) biopsies were studied using pressure myography combined with confocal microscopy. All RA- and LV-IMCAs from organ donors and pigs developed circa 25% MT. In contrast, 44% of human RA-IMCAs from 88 patients with heart valve disease had poor (<10%) MT yet retained cell viability and an ability to raise cytoplasmic Ca2+ in response to vasoconstrictor agents. Comparing across human heart chambers and species, we found that based on patient medical history and six tests, the strongest predictor of poor MT in IMCAs was increased expression of the synthetic marker caldesmon relative to the contractile marker SM-myosin heavy chain. In addition, high resolution imaging revealed a distinct layer of longitudinally aligned SMCs between ECs and radial SMCs, and we show poor MT was associated with disruptions in these cellular alignments. CONCLUSION: These data demonstrate the first use of atrial and ventricular biopsies from patients and pigs to reveal that impaired coronary MT reflects a switch of viable SMCs towards a synthetic phenotype, rather than a loss of SMC viability. These arteries represent a model for further studies of coronary microvascular contractile dysfunction.


Asunto(s)
Enfermedades de las Válvulas Cardíacas , Músculo Liso Vascular , Animales , Vasos Coronarios/patología , Enfermedades de las Válvulas Cardíacas/metabolismo , Humanos , Contracción Muscular , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Porcinos
6.
J Cardiovasc Pharmacol ; 78(Suppl 6): S3-S12, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34840265

RESUMEN

ABSTRACT: Endothelium-derived hyperpolarizing factor (EDHF) was envisaged as a chemical entity causing vasodilation by hyperpolarizing vascular smooth muscle (VSM) cells and distinct from nitric oxide (NO) ([aka endothelium-derived relaxing factor (EDRF)]) and prostacyclin. The search for an identity for EDHF unraveled the complexity of signaling within small arteries. Hyperpolarization originates within endothelial cells (ECs), spreading to the VSM by 2 branches, 1 chemical and 1 electrical, with the relative contribution varying with artery location, branch order, and prevailing profile of VSM activation. Chemical signals vary likewise and can involve potassium ion, lipid mediators, and hydrogen peroxide, whereas electrical signaling depends on physical contacts formed by homocellular and heterocellular (myoendothelial; MEJ) gap junctions, both able to conduct hyperpolarizing current. The discovery that chemical and electrical signals each arise within ECs resulted in an evolution of the single EDHF concept into the more inclusive, EDH signaling. Recognition of the importance of MEJs and particularly the fact they can support bidirectional signaling also informed the discovery that Ca2+ signals can pass from VSM to ECs during vasoconstriction. This signaling activates negative feedback mediated by NO and EDH forming a myoendothelial feedback circuit, which may also be responsible for basal or constitutive release of NO and EDH activity. The MEJs are housed in endothelial projections, and another spin-off from investigating EDH signaling was the discovery these fine structures contain clusters of signaling proteins to regulate both hyperpolarization and NO release. So, these tiny membrane bridges serve as a signaling superhighway or infobahn, which controls vasoreactivity by responding to signals flowing back and forth between the endothelium and VSM. By allowing bidirectional signaling, MEJs enable sinusoidal vasomotion, co-ordinated cycles of widespread vasoconstriction/vasodilation that optimize time-averaged blood flow. Cardiovascular disease disrupts EC signaling and as a result vasomotion changes to vasospasm.


Asunto(s)
Factores Biológicos/metabolismo , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Factores Relajantes Endotelio-Dependientes/metabolismo , Uniones Comunicantes/metabolismo , Vasodilatación , Animales , Comunicación Celular , Endotelio Vascular/fisiopatología , Humanos , Potenciales de la Membrana , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Canales de Potasio Calcio-Activados/metabolismo , Transducción de Señal , Vasoconstricción
7.
Nat Protoc ; 16(10): 4650-4675, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34400840

RESUMEN

Ca2+ handling within cardiac myocytes underpins coordinated contractile function within the beating heart. This protocol enables high spatial and temporal Ca2+ imaging of ex vivo multicellular myocardial strips. The endocardial surface is retained, and strips of 150-300-µm thickness are dissected, loaded with Ca2+ indicators and mounted within 1.5 h. A list of the equipment and reagents used and the key methodological aspects allowing the use of this technique on strips from any chamber of the mammalian heart are described. We have successfully used this protocol on human, pig and rat biopsy samples. On use of this protocol with intact endocardial endothelium, we demonstrated that the myocytes develop asynchronous spontaneous Ca2+ events, which can be ablated by electrically evoked Ca2+ transients, and subsequently redevelop spontaneously after cessation of stimulation. This protocol thus offers a rapid and reliable method for studying the Ca2+ signaling underpinning cardiomyocyte contraction, in both healthy and diseased tissue.


Asunto(s)
Señalización del Calcio , Miocardio , Miocitos Cardíacos , Animales , Contracción Miocárdica , Ratas , Porcinos
8.
Circulation ; 143(11): 1123-1138, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33334125

RESUMEN

BACKGROUND: Although it has long been recognized that smooth muscle Na/K ATPase modulates vascular tone and blood pressure (BP), the role of its accessory protein phospholemman has not been characterized. The aim of this study was to test the hypothesis that phospholemman phosphorylation regulates vascular tone in vitro and that this mechanism plays an important role in modulation of vascular function and BP in experimental models in vivo and in humans. METHODS: In mouse studies, phospholemman knock-in mice (PLM3SA; phospholemman [FXYD1] in which the 3 phosphorylation sites on serines 63, 68, and 69 are mutated to alanines), in which phospholemman is rendered unphosphorylatable, were used to assess the role of phospholemman phosphorylation in vitro in aortic and mesenteric vessels using wire myography and membrane potential measurements. In vivo BP and regional blood flow were assessed using Doppler flow and telemetry in young (14-16 weeks) and old (57-60 weeks) wild-type and transgenic mice. In human studies, we searched human genomic databases for mutations in phospholemman in the region of the phosphorylation sites and performed analyses within 2 human data cohorts (UK Biobank and GoDARTS [Genetics of Diabetes Audit and Research in Tayside]) to assess the impact of an identified single nucleotide polymorphism on BP. This single nucleotide polymorphism was expressed in human embryonic kidney cells, and its effect on phospholemman phosphorylation was determined using Western blotting. RESULTS: Phospholemman phosphorylation at Ser63 and Ser68 limited vascular constriction in response to phenylephrine. This effect was blocked by ouabain. Prevention of phospholemman phosphorylation in the PLM3SA mouse profoundly enhanced vascular responses to phenylephrine both in vitro and in vivo. In aging wild-type mice, phospholemman was hypophosphorylated, and this correlated with the development of aging-induced essential hypertension. In humans, we identified a nonsynonymous coding variant, single nucleotide polymorphism rs61753924, which causes the substitution R70C in phospholemman. In human embryonic kidney cells, the R70C mutation prevented phospholemman phosphorylation at Ser68. This variant's rare allele is significantly associated with increased BP in middle-aged men. CONCLUSIONS: These studies demonstrate the importance of phospholemman phosphorylation in the regulation of vascular tone and BP and suggest a novel mechanism, and therapeutic target, for aging-induced essential hypertension in humans.


Asunto(s)
Presión Sanguínea/efectos de los fármacos , Genómica/métodos , Hipertensión/tratamiento farmacológico , Proteínas de la Membrana/uso terapéutico , Fosfoproteínas/uso terapéutico , Fosforilación/fisiología , Animales , Humanos , Hipertensión/fisiopatología , Masculino , Proteínas de la Membrana/farmacología , Ratones , Fosfoproteínas/farmacología
9.
Hypertension ; 76(3): 785-794, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32713276

RESUMEN

Endothelial dysfunction in small arteries is a ubiquitous, early feature of cardiovascular disease, including hypertension. Dysfunction reflects reduced bioavailability of endothelium-derived nitric oxide (NO) and depressed endothelium-dependent hyperpolarization that enhances vasoreactivity. We measured smooth muscle membrane potential and tension, smooth muscle calcium, and used real-time quantitative polymerase chain reaction in small arteries and isolated tubes of endothelium to investigate how dysfunction enhances vasoreactivity. Rat nonmyogenic mesenteric resistance arteries developed vasomotion to micromolar phenylephrine (α1-adrenoceptor agonist); symmetrical vasoconstrictor oscillations mediated by L-type voltage-gated Ca2+ channels (VGCCs). Inhibiting NO synthesis abolished vasomotion so nanomolar phenylephrine now stimulated rapid, transient depolarizing spikes in the smooth muscle associated with chaotic vasomotion/vasospasm. Endothelium-dependent hyperpolarization block also enabled phenylephrine-vasospasm but without spikes or chaotic vasomotion. Depolarizing spikes were Ca2+-based and abolished by either T-type or L-type VGCCs blockers with depressed vasoconstriction. Removing NO also enabled transient spikes/vasoconstriction to Bay K-8644 (L-type VGCC activator). However, these were abolished by the L-type VGCC blocker nifedipine but not T-type VGCC block. Phenylephrine also initiated T-type VGCC-transient spikes and enhanced vasoconstriction after NO loss in nonmyogenic arteries from spontaneously hypertensive rats. In contrast to mesenteric arteries, myogenic coronary arteries displayed transient spikes and further vasoconstriction spontaneously on loss of NO. T-type VGCC block abolished these spikes and additional vasoconstriction but not myogenic tone. Therefore, in myogenic and nonmyogenic small arteries, reduced NO bioavailability engages T-type VGCCs, triggering transient depolarizing spikes in normally quiescent vascular smooth muscle to cause vasospasm. T-type block may offer a means to suppress vasospasm without inhibiting myogenic tone mediated by L-type VGCCs.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Endotelio Vascular , Hipertensión , Nifedipino/farmacología , Óxido Nítrico/metabolismo , Potenciales de Acción/efectos de los fármacos , Animales , Bloqueadores de los Canales de Calcio/farmacología , Señalización del Calcio/efectos de los fármacos , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Hipertensión/tratamiento farmacológico , Hipertensión/metabolismo , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Fenilefrina/farmacología , Ratas , Resistencia Vascular , Vasoconstricción/efectos de los fármacos , Vasoconstricción/fisiología , Vasoconstrictores/farmacología , Vasodilatación/efectos de los fármacos , Vasodilatación/fisiología
10.
Curr Top Membr ; 85: 327-355, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32402644

RESUMEN

The endothelium is an important regulator of arterial vascular tone, acting to release nitric oxide (NO) and open Ca2+-activated K+ (KCa) channels to relax vascular smooth muscle cells (VSMCs). While agonists acting at endothelial cell (EC) receptors are widely used to assess the ability of the endothelium to reduce vascular tone, the intrinsic EC-dependent mechanisms are less well characterized. In small resistance arteries and arterioles, the presence of heterocellular gap junctions termed myoendothelial gap junctions (MEGJs) allows the passage of not only current, but small molecules including Ca2+ and inositol trisphosphate (IP3). When stimulated to contract, the increase in VSM Ca2+ and IP3 can therefore potentially pass through MEGJs to activate adjacent ECs. This activation releases NO and opens KCa channels, which act to limit contraction. This myoendothelial feedback (MEF) is amplified by EC Ca2+ influx and release pathways, and is dynamically modulated by processes regulating gap junction conductance. There is a remarkable localization of key signaling and regulatory proteins within the EC projection toward VSM, and the intrinsic EC-dependent signaling pathways occurring with this highly specialized microdomain are reviewed.


Asunto(s)
Endotelio Vascular/metabolismo , Retroalimentación Fisiológica , Microvasos/fisiología , Animales , Señalización del Calcio , Endotelio Vascular/citología , Humanos , Microvasos/citología , Microvasos/metabolismo , Vasodilatación
11.
Cell Calcium ; 75: 21-29, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30114532

RESUMEN

The role of vascular gap junctions in the conduction of intercellular Ca2+ and vasoconstriction along small resistance arteries is not entirely understood. Some depolarizing agents trigger conducted vasoconstriction while others only evoke a local depolarization. Here we use a novel technique to investigate the temporal and spatial relationship between intercellular Ca2+ signals generated by smooth muscle action potentials (APs) and vasoconstriction in mesenteric resistance arteries (MA). Pulses of exogenous KCl to depolarize the downstream end (T1) of a 3 mm long artery increased intracellular Ca2+ associated with vasoconstriction. The spatial spread and amplitude of both depended on the duration of the pulse, with only a restricted non-conducting vasoconstriction to a 1 s pulse. While blocking smooth muscle cell (SMC) K+ channels with TEA and activating L-type voltage-gated Ca2+ channels (VGCCs) with BayK 8644 spread was dramatically facilitated, so the 1 s pulse evoked intercellular Ca2+ waves and vasoconstriction that spread along an entire artery segment 3000 µm long. Ca2+ waves spread as nifedipine-sensitive Ca2+ spikes due to SMC action potentials, and evoked vasoconstriction. Both intercellular Ca2+ and vasoconstriction spread at circa 3 mm s-1 and were independent of the endothelium. The spread but not the generation of Ca2+ spikes was reversibly blocked by the gap junction inhibitor 18ß-GA. Thus, smooth muscle gap junctions enable depolarization to spread along resistance arteries, and once regenerative Ca2+-based APs occur, spread along the entire length of an artery followed by widespread vasoconstriction.


Asunto(s)
Señalización del Calcio , Espacio Extracelular/metabolismo , Uniones Comunicantes/metabolismo , Potenciales de la Membrana/fisiología , Arterias Mesentéricas/fisiología , Miocitos del Músculo Liso/metabolismo , Resistencia Vascular/fisiología , Vasoconstricción/fisiología , Ácido 3-piridinacarboxílico, 1,4-dihidro-2,6-dimetil-5-nitro-4-(2-(trifluorometil)fenil)-, Éster Metílico/farmacología , Animales , Señalización del Calcio/efectos de los fármacos , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/fisiología , Femenino , Uniones Comunicantes/efectos de los fármacos , Masculino , Potenciales de la Membrana/efectos de los fármacos , Arterias Mesentéricas/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Canales de Potasio/metabolismo , Cloruro de Potasio/farmacología , Ratas Wistar , Resistencia Vascular/efectos de los fármacos , Vasoconstricción/efectos de los fármacos
12.
J Physiol ; 596(16): 3553-3566, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29862503

RESUMEN

KEY POINTS: Prolonged exposure to vascular endothelial growth factor A (VEGF-A) inhibits agonist-mediated endothelial cell Ca2+ release and subsequent activation of intermediate conductance Ca2+ -activated K+ (IKCa ) channels, which underpins vasodilatation as a result of endothelium-dependent hyperpolarization (EDH) in mouse resistance arteries. Signalling via mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK) downstream of VEGF-A was required to attenuate endothelial cell Ca2+ responses and the EDH-vasodilatation mediated by IKCa activation. VEGF-A exposure did not modify vasodilatation as a result of the direct activation of IKCa channels, nor the pattern of expression of inositol 1,4,5-trisphosphate receptor 1 within endothelial cells of resistance arteries. These results indicate a novel role for VEGF-A in resistance arteries and suggest a new avenue for investigation into the role of VEGF-A in cardiovascular diseases. ABSTRACT: Vascular endothelial growth factor A (VEGF-A) is a potent permeability and angiogenic factor that is also associated with the remodelling of the microvasculature. Elevated VEGF-A levels are linked to a significant increase in the risk of cardiovascular dysfunction, although it is unclear how VEGF-A has a detrimental, disease-related effect. Small resistance arteries are central determinants of peripheral resistance and endothelium-dependent hyperpolarization (EDH) is the predominant mechanism by which these arteries vasodilate. Using isolated, pressurized resistance arteries, we demonstrate that VEGF-A acts via VEGF receptor-2 (R2) to inhibit both endothelial cell (EC) Ca2+ release and the associated EDH vasodilatation mediated by intermediate conductance Ca2+ -activated K+ (IKCa ) channels. Importantly, VEGF-A had no direct effect against IKCa channels. Instead, the inhibition was crucially reliant on the downstream activation of the mitogen-activated protein/extracellular signal-regulated kinase kinase 1/2 (MEK1/2). The distribution of EC inositol 1,4,5-trisphosphate (IP3 ) receptor-1 (R1) was not affected by exposure to VEGF-A and we propose an inhibition of IP3 R1 through the MEK pathway, probably via ERK1/2. Inhibition of EC Ca2+ via VEGFR2 has profound implications for EDH-mediated dilatation of resistance arteries and could provide a mechanism by which elevated VEGF-A contributes towards cardiovascular dysfunction.


Asunto(s)
Calcio/metabolismo , Endotelio Vascular/fisiología , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Arterias Mesentéricas/fisiología , Oligopéptidos/farmacología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Vasodilatación , Animales , Endotelio Vascular/efectos de los fármacos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , MAP Quinasa Quinasa 1/metabolismo , MAP Quinasa Quinasa 2/metabolismo , Masculino , Arterias Mesentéricas/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Resistencia Vascular
13.
J Physiol ; 596(16): 3453-3454, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29951990
14.
Vascul Pharmacol ; 103-105: 29-35, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29339138

RESUMEN

Vascular dysfunction in small resistance arteries is observed during chronic elevations in blood glucose. Hyperglycaemia-associated effects on endothelium-dependent vasodilation have been well characterized, but effects on conducted vasodilation in the resistance vasculature are not known. Small mesenteric arteries were isolated from healthy and diabetic db/db mice, which were used as a model of chronic hyperglycaemia. Endothelium-dependent vasodilation via the Gq/11-coupled proteinase activated receptor 2 (PAR2) was stimulated with the selective agonist SLIGRL. The Ca2+-sensitive fluorescent indicator fluo-8 reported changes in endothelial cell (EC) [Ca2+]i, and triple cannulated bifurcating mesenteric arteries were used to study conducted vasodilation. Chronic hyperglycaemia did not affect either EC Ca2+ or local vasodilation to SLIGRL. However, both acute and chronic exposure to high glucose or the mannitol osmotic control attenuated conducted vasodilation to 10µM SLIGRL. This investigation demonstrates for the first time that a hypertonic solution containing glucose or mannitol can interfere with the spread of a hyperpolarizing current along the endothelium in a physiological setting. Our findings reiterate the importance of studying the effects of hyperglycaemia in the vasculature, and provide the basis for further studies regarding the modulation of junctional proteins involved in cell to cell communication by diseases such as diabetes.


Asunto(s)
Glucemia/metabolismo , Diabetes Mellitus Experimental/fisiopatología , Hiperglucemia/fisiopatología , Vasodilatación/fisiología , Animales , Calcio/metabolismo , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Glucosa/administración & dosificación , Glucosa/metabolismo , Manitol/administración & dosificación , Manitol/metabolismo , Arterias Mesentéricas/metabolismo , Ratones , Oligopéptidos/farmacología , Vasodilatación/efectos de los fármacos
15.
16.
Hypertension ; 2017 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-28760938

RESUMEN

Nitroxyl (HNO) donors offer considerable therapeutic potential for the treatment of hypertension-related cardiovascular disorders, particularly heart failure, as they combine an inotropic action with peripheral vasodilation. Angeli's salt is the only HNO donor whose mechanism has been studied in depth, and recently, Angeli's salt vasodilation was suggested to be indirect and caused by calcitonin gene-related peptide (CGRP) released from perivascular nerves after HNO activates TRPA1 (transient receptor potential cation channel subfamily A member 1) channels. We investigated resistance artery vasorelaxation to the HNO donor, isopropylamine NONOate (IPA/NO), one of the structures providing a template for therapeutic development. Wire myography in combination with measurements of smooth muscle membrane potential was used to characterize the effect of IPA/NO in mesenteric resistance arteries. Immunohistochemistry was assessed in pressurized arteries. IPA/NO concentration dependently hyperpolarized and relaxed arteries precontracted with the α1-adrenoreceptor agonist, phenylephrine. These effects were blocked by the soluble guanylyl cyclase inhibitor, ODQ (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one) but not by the KATP channel inhibitor, glibenclamide. Vasorelaxation persisted in the presence of raised [K+]o, used to block hyperpolarization, capsaicin to deplete perivascular CGRP, or HC030031 (2-(1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7H-purin-7-yl)-N-(4 isopropylphenyl) acetamide) to block TRPA1 receptors. Without preconstriction, hyperpolarization to IPA/NO was suppressed by glibenclamide, capsaicin, or HC030031. Hyperpolarization but not vasorelaxation to exogenous CGRP was inhibited with glibenclamide. Thus, vascular hyperpolarization is not necessary for vasorelaxation to the HNO donor IPA/NO, even though both effects are cGMP dependent. The reduced hyperpolarization after depletion of perivascular CGRP or block of TRPA1 receptors indicates some release of CGRP, but this does not contribute to HNO vasorelaxation. Therefore, HNO-TRPA1-CGRP signaling does not seem important for vasodilation to IPA/NO in resistance arteries.

17.
J Physiol ; 595(20): 6371, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28833162
18.
Sci Signal ; 10(486)2017 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-28676489

RESUMEN

Vascular smooth muscle contraction is suppressed by feedback dilation mediated by the endothelium. In skeletal muscle arterioles, this feedback can be activated by Ca2+ signals passing from smooth muscle through gap junctions to endothelial cells, which protrude through holes in the internal elastic lamina to make contact with vascular smooth muscle cells. Although hypothetically either Ca2+ or inositol trisphosphate (IP3) may provide the intercellular signal, it is generally thought that IP3 diffusion is responsible. We provide evidence that Ca2+ entry through L-type voltage-dependent Ca2+ channels (VDCCs) in vascular smooth muscle can pass to the endothelium through positions aligned with holes in the internal elastic lamina in amounts sufficient to activate endothelial cell Ca2+ signaling. In endothelial cells in which IP3 receptors (IP3Rs) were blocked, VDCC-driven Ca2+ events were transient and localized to the endothelium that protrudes through the internal elastic lamina to contact vascular smooth muscle cells. In endothelial cells in which IP3Rs were not blocked, VDCC-driven Ca2+ events in endothelial cells were amplified to form propagating waves. These waves activated voltage-insensitive, intermediate-conductance, Ca2+-activated K+ (IKCa) channels, thereby providing feedback that effectively suppressed vasoconstriction and enabled cycles of constriction and dilation called vasomotion. Thus, agonists that stimulate vascular smooth muscle depolarization provide Ca2+ to endothelial cells to activate a feedback circuit that protects tissue blood flow.


Asunto(s)
Arteriolas/metabolismo , Calcio/metabolismo , Endotelio Vascular/metabolismo , Retroalimentación Fisiológica/fisiología , Músculo Liso Vascular/metabolismo , Vasoconstricción/fisiología , Vasodilatación/fisiología , Animales , Arteriolas/citología , Canales de Calcio Tipo L/metabolismo , Células Cultivadas , Endotelio Vascular/citología , Masculino , Músculo Liso Vascular/citología , Canales de Potasio Calcio-Activados/metabolismo , Ratas , Ratas Wistar
19.
Proc Natl Acad Sci U S A ; 114(18): 4805-4810, 2017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28373558

RESUMEN

The artery wall is equipped with a water permeation barrier that allows blood to flow at high pressure without significant water leak. The precise location of this barrier is unknown despite its importance in vascular function and its contribution to many vascular complications when it is compromised. Herein we map the water permeability in intact arteries, using coherent anti-Stokes Raman scattering (CARS) microscopy and isotopic perfusion experiments. Generation of the CARS signal is optimized for water imaging with broadband excitation. We identify the water permeation barrier as the endothelial basolateral membrane and show that the apical membrane is highly permeable. This is confirmed by the distribution of the AQP1 water channel within endothelial membranes. These results indicate that arterial pressure equilibrates within the endothelium and is transmitted to the supporting basement membrane and internal elastic lamina macromolecules with minimal deformation of the sensitive endothelial cell. Disruption of this pressure transmission could contribute to endothelial cell dysfunction in various pathologies.


Asunto(s)
Acuaporina 1/metabolismo , Arterias , Permeabilidad Capilar , Endotelio Vascular , Microscopía Óptica no Lineal , Animales , Arterias/diagnóstico por imagen , Arterias/metabolismo , Endotelio Vascular/diagnóstico por imagen , Endotelio Vascular/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley
20.
Microcirculation ; 23(8): 626-630, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27653241

RESUMEN

The SMCs of skeletal muscle arterioles are intricately sensitive to changes in membrane potential. Upon increasing luminal pressure, the SMCs depolarize, thereby opening VDCCs, which leads to contraction. Mechanisms that oppose this myogenic tone can involve voltage-dependent and independent dilator pathways, and can be endothelium-dependent or independent. Of particular interest are the pathways leading to hyperpolarization of SMCs, as these can potentially evoke both local and conducted dilation. This review focuses on three agonists that cause local and conducted dilation in skeletal muscle: ACh, ATP, and KCl. The mechanisms for the release of these agonists during motor nerve stimulation and/or hypoxia, and their actions to open either Ca2+ -activated K+ channels (KCa ) or inwardly rectifying K+ channels (KIR ) are described. By causing local and conducted dilation, each agonist has the ability to improve skeletal muscle blood flow during exercise and ischemia.


Asunto(s)
Comunicación Celular/fisiología , Músculo Esquelético/fisiología , Acetilcolina/farmacología , Adenosina Trifosfato/farmacología , Animales , Células Endoteliales/metabolismo , Humanos , Tono Muscular/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Canales de Potasio/efectos de los fármacos , Cloruro de Potasio/farmacología , Vasodilatación/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA