Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Pharm Sci ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38508339

RESUMEN

PURPOSE: In the present study, biodegradable poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanoparticles (NPs) containing insulin were loaded in sodium alginate/jeffamine (ALG/jeff) hydrogel for prolonged delivery of insulin. The main aim of this work was to fabricate an efficient insulin delivery system to improve patient adherence by decreasing the repetition of injections. METHODS: Swelling and morphological properties and crosslinking efficiency of ALG/jeff hydrogel were assessed. The composite hydrogel was prepared by adding PHBV NPs to ALG/jeff hydrogel concurrently with crosslinking process. The morphology and loading capacity of composite hydrogel were analyzed. RESULTS: Circular dichroism measurement demonstrated that insulin remains stable following fabrication process. The release profile exhibited 54.6 % insulin release from composite hydrogel within 31 days with minor initial burst release equated to nanoparticles and hydrogels. MTT cell viability analysis was performed by applying L-929 cell line and no cytotoxic effect was observed. CONCLUSIONS: Favorable results clearly introduced fabricated composite hydrogel as an excellent candidate for drug delivery systems and also paves the route for prolonged delivery systems of other proteins.

2.
J Liposome Res ; : 1-26, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38520185

RESUMEN

Triple-negative breast Cancer (TNBC) is one of the deadliest types, making up about 20% of all breast cancers. Chemotherapy is the traditional manner of progressed TNBC treatment; however, it has a short-term result with a high reversibility pace. The lack of targeted treatment limited and person-dependent treatment options for those suffering from TNBC cautions to be the worst type of cancer among breast cancer patients. Consequently, appropriate treatment for this disease is considered a major clinical challenge. Therefore, various treatment methods have been developed to treat TNBC, among which chemotherapy is the most common and well-known approach recently studied. Although effective methods are chemotherapies, they are often accompanied by critical limitations, especially the lack of specific functionality. These methods lead to systematic toxicity and, ultimately, the expansion of multidrug-resistant (MDR) cancer cells. Therefore, finding novel and efficient techniques to enhance the targeting of TNBC treatment is an essential requirement. Liposomes have demonstrated that they are an effective method for drug delivery; however, among a large number of liposome-based drug delivery systems annually developed, a small number have just received authorization for clinical application. The new approaches to using liposomes target their structure with various ligands to increase therapeutic efficiency and diminish undesired side effects on various body tissues. The current study describes the most recent strategies and research associated with functionalizing the liposomes' structure with different ligands as targeted drug carriers in treating TNBCs in preclinical and clinical stages.

3.
Macromol Biosci ; 23(9): e2300181, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37399543

RESUMEN

Pure positive electrostatic charges (PPECs) show suppressive effect on the proliferation and metabolism of invasive cancer cells without affecting normal tissues. PPECs are used for the delivery of drug-loaded polymeric nanoparticles (DLNs) capped with negatively charged poly(lactide-co-glycolide) (PLGA) and Poly(vinyl-alcohol) PVA into the tumor site of mouse models. The charged patch is installed on top of the skin in the mouse models' tumor region, and the controlled selective release of the drug is assayed by biochemical, radiological, and histological experiments on both tumorized models and normal rats' livers. It is found that DLNs synthesized by PLGA show great attraction to PPECs due to their stable negative charges, which would not degrade immediately in blood. The burst and drug release after less than 48h of this synthesized DLNs are 10% and 50%, respectively. These compounds can deliver the loaded-drug into the tumor site with the assistance of PPECs, and the targeted-retarded release will take place. Hence, local therapy can be achieved with much lower drug concentration (conventional chemotherapy [2 mg kg-1 ] versus DLNs-based chemotherapy [0.75 mg kg-1 ]) with negligible side effects in non-targeted organs. PPECs have many potential clinical applications for advanced-targeted chemotherapy with the lowest discernible side effects.


Asunto(s)
Antineoplásicos , Nanopartículas , Neoplasias , Ratones , Ratas , Animales , Sistemas de Liberación de Medicamentos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/metabolismo , Electricidad Estática , Antineoplásicos/química , Polímeros/uso terapéutico , Neoplasias/tratamiento farmacológico , Nanopartículas/química , Portadores de Fármacos/química , Liberación de Fármacos
4.
Biomed Res Int ; 2022: 7230354, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35434125

RESUMEN

There is a clear clinical need for efficient cartilage healing strategies for treating cartilage defects which burdens millions of patients physically and financially. Different strategies including microfracture technique, osteochondral transfer, and scaffold-based treatments have been suggested for curing cartilage injuries. Although some improvements have been achieved in several facets, current treatments are still less than satisfactory. Recently, different hydrogel-based biomaterials have been suggested as a therapeutic candidate for cartilage tissue regeneration due to their biocompatibility, high water content, and tunability. Specifically, magnetic hydrogels are becoming more attractive due to their smart response to magnetic fields remotely. We seek to outline the context-specific regenerative potential of magnetic hydrogels for cartilage tissue repair. In this review, first, we explained conventional techniques for cartilage repair and then compared them with new scaffold-based approaches. We illustrated various hydrogels used for cartilage regeneration by highlighting the magnetic hydrogels. Also, we gathered in vitro and in vivo studies of how magnetic hydrogels promote chondrogenesis as well as studied the biological mechanism which is responsible for cartilage repair due to the application of magnetic hydrogel.


Asunto(s)
Enfermedades de los Cartílagos , Cartílago Articular , Enfermedades de los Cartílagos/terapia , Cartílago Articular/lesiones , Condrogénesis , Humanos , Hidrogeles/uso terapéutico , Fenómenos Magnéticos , Ingeniería de Tejidos/métodos
5.
Pharm Nanotechnol ; 10(2): 90-112, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35142274

RESUMEN

According to the interaction of nanoparticles with biological systems, enthusiasm for nanotechnology in biomedical applications has been developed in the past decades. Fe2O3 nanoparticles, as the most stable iron oxide, have special merits that make them useful widely for detecting diseases, therapy, drug delivery, and monitoring the therapeutic process. This review presents the fabrication methods of Fe2O3-based materials and their photocatalytic and magnetic properties. Then, we highlight the application of Fe2O3-based nanoparticles in diagnosis and imaging, different therapy methods, and finally, stimulus-responsive systems, such as pH-responsive, magneticresponsive, redox-responsive, and enzyme-responsive, with an emphasis on cancer treatment. In addition, the potential of Fe2O3 to combine diagnosis and therapy within a single particle called theranostic agent will be discussed.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanopartículas , Sistemas de Liberación de Medicamentos/métodos , Medicina de Precisión
6.
Adv Drug Deliv Rev ; 182: 114097, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34999121

RESUMEN

The oral administration of therapeutic peptides and proteins is favoured from a patient and commercial point of view. In order to reach the systemic circulation after oral administration, these drugs have to overcome numerous barriers including the enzymatic, sulfhydryl, mucus and epithelial barrier. The development of oral formulations for therapeutic peptides and proteins is therefore necessary. Among the most promising formulation approaches are lipid-based nanocarriers such as oil-in-water nanoemulsions, self-emulsifying drug delivery systems (SEDDS), solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), liposomes and micelles. As the lipophilic character of therapeutic peptides and proteins can be tremendously increased such as by the formation of hydrophobic ion pairs (HIP) with hydrophobic counter ions, they can be incorporated in the lipophilic phase of these carriers. Since gastrointestinal (GI) peptidases as well as sulfhydryl compounds such as glutathione and dietary proteins are too hydrophilic to enter the lipophilic phase of these carriers, the incorporated therapeutic peptide or protein is protected towards enzymatic degradation as well as unintended thiol/disulfide exchange reactions. Stability of lipid-based nanocarriers towards lipases can be provided by the use to excipients that are not or just poorly degraded by these enzymes. Nanocarriers with a size <200 nm and a mucoinert surface such as PEG or zwitterionic surfaces exhibit high mucus permeating properties. Having reached the underlying absorption membrane, lipid-based nanocarriers enable paracellular and lymphatic drug uptake, induce endocytosis and transcytosis or simply fuse with the cell membrane releasing their payload into the systemic circulation. Numerous in vivo studies provide evidence for the potential of these delivery systems. Within this review we provide an overview about the different barriers for oral peptide and protein delivery, highlight the progress made on lipid-based nanocarriers in order to overcome them and discuss strengths and weaknesses of these delivery systems in comparison to other technologies.


Asunto(s)
Portadores de Fármacos/química , Péptidos/administración & dosificación , Proteínas/administración & dosificación , Administración Oral , Liberación de Fármacos , Estabilidad de Medicamentos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Mucosa Intestinal/metabolismo , Liposomas/química , Micelas , Moco/metabolismo , Sistema de Administración de Fármacos con Nanopartículas/química , Nanopartículas/química , Péptido Hidrolasas/metabolismo , Péptidos/farmacocinética , Proteínas/farmacocinética
7.
Drug Deliv Transl Res ; 12(6): 1339-1354, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34402023

RESUMEN

Cancer is a multidimensional and challenging disease to handle. Current statistics reveal that we are far from satisfying cancer treatment. Taking advantage of different therapeutic agents that affect multiple pathways has been established as highly productive. Nevertheless, owing to several hindrances to conventional combination therapy, such as lack of tumor targeting, non-uniform pharmacokinetic of the combined drugs, and off-target side effects, it is well documented that this treatment approach is unlikely to address all the difficulties observed in monotherapy. Co-delivery systems could enhance the therapeutic efficacy of the combination therapy by targeting cancer cells and improving the pharmacokinetic and physicochemical properties of the therapeutic agents. Nevertheless, it seems that present knowledge in responding to the challenges in cancer treatment is still inadequate and far from optimal treatment, which highlights the urgent need for systematic studies direct to identify various aspects of co-delivery systems. Accordingly, to gather informative data, save time, and achieve superior results, the following steps are necessary: (1) implementing computational methods to predict drug-drug interactions (DDIs) in vitro and in vivo, (2) meticulous cancer studies at the cellular and molecular levels to obtain specific criteria for selecting preclinical and clinical models, (3) extensive physiological and pharmacokinetic study of nanocarriers behavior in preclinical models, and (4) finding the optimal formulation and analyzing its behavior in cellular and animal models facilitates bridging in vivo models to clinical trials. This review aims to deliver an overview of co-delivery systems, rationales, and suggestions for further studies in this field.


Asunto(s)
Antineoplásicos , Neoplasias , Animales , Terapia Combinada , Sistemas de Liberación de Medicamentos , Neoplasias/patología
8.
Adv Pharm Bull ; 11(4): 632-642, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34888210

RESUMEN

Purpose: Ranibizumab is a monoclonal antibody fragment, targeting all isoforms of vascular endothelial growth factor A (VEGF-A), a protein involved in angiogenesis. It is used to treat age-related macular degeneration (AMD), retinal vein occlusion (RVO), and diabetic macular edema (DME), which are associated with blindness worldwide. However, proper treatment can decrease the loss of vision in about 90% of patients. Because of poor drug uptake in topical therapy and several adverse side effects of systemic irregularities and intravitreal injections, sustained-release drug delivery systems are more suitable for treatment. However, there are many challenges in the development of these systems due to the loss of protein activities. Methods: After drug complexation by the ion pairing method and preparation of a polymeric implant, containing the drug, the characteristics of the complexes were examined by Fourier-transform infrared spectroscopy and circular dichroism spectroscopy. The stability of antibody activity and biocompatibility of the released drug from the implant were assessed by bioassays and MTT assay, respectively. Finally, the release kinetics were investigated. Results: The bioassays showed the higher activity of the drug complex, compared to the free form, besides good biocompatibility in vitro. Also, the release data confirmed sustained and controlled release characteristics for the prepared implant. Conclusion: In this study, for the first time, we proposed a method for developing a sustained-release intraocular implant, consisting of ranibizumab by the heating method. This method allows for the industrial production of ranibizumab by extrusion and eliminates the complications related to reservoir systems.

10.
Biochim Biophys Acta Gen Subj ; 1865(11): 129974, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34343644

RESUMEN

Background Since December 2019, the newly emerged SARS-CoV-2 virus continues to infect humans and many people died from severe Covid-19 during the last 2 years worldwide. Different approaches are being used for treatment of this infection and its consequences, but limited results have been achieved and new therapeutics are still needed. One of the most interesting biotherapeutics in this era are Nanobodies which have shown very promising results in recent researches. Scope of review Here, we have reviewed the potentials of Nanobodies in Covid-19 treatment. We have also discussed the properties of these biotherapeutics that make them very suitable for pulmonary drug delivery, which seems to be very important route of administration in this disease. Major conclusion Nanobodies with their special biological and biophysical characteristics and their resistance against harsh manufacturing condition, can be considered as promising, targeted biotherapeutics which can be administered by pulmonary delivery pharmaceutical systems against Covid-19. General significance Covid-19 has become a global problem during the last two years and with emerging mutant strains, prophylactic and therapeutic approaches are still highly needed. Nanobodies with their specific properties can be considered as valuable and promising candidates in Covid-19 therapy.


Asunto(s)
Anticuerpos Neutralizantes/uso terapéutico , Antivirales/uso terapéutico , COVID-19/terapia , Factores Inmunológicos/uso terapéutico , SARS-CoV-2/efectos de los fármacos , Anticuerpos de Dominio Único/uso terapéutico , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores , Enzima Convertidora de Angiotensina 2/antagonistas & inhibidores , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/inmunología , Animales , Anticuerpos Neutralizantes/biosíntesis , Anticuerpos Neutralizantes/aislamiento & purificación , Antivirales/aislamiento & purificación , Antivirales/metabolismo , COVID-19/inmunología , COVID-19/virología , Camelus , Sistemas de Liberación de Medicamentos , Humanos , Sueros Inmunes/química , Factores Inmunológicos/biosíntesis , Factores Inmunológicos/aislamiento & purificación , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/virología , Terapia Molecular Dirigida/métodos , Biblioteca de Péptidos , Unión Proteica/efectos de los fármacos , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Anticuerpos de Dominio Único/biosíntesis , Anticuerpos de Dominio Único/aislamiento & purificación , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología
11.
AAPS PharmSciTech ; 22(5): 174, 2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34114068

RESUMEN

Posterior eye diseases are a common cause of vision problems in developing countries, which have encouraged the development of new treatment models for these degenerative diseases. Intraocular implants are one of the drug delivery systems to the posterior region of the eye. Using these implants, the blood-eye barrier can be bypassed; the complications caused by repeated in vitro administrations can be eliminated, and smaller amounts of the drug would be used during the treatment process. Meanwhile, biodegradable implants have received more attention due to their biodegradable structure and the lack of need for re-surgery to remove the rest of the system from the eye. The aim of this study is to employ biodegradable implants composed of polyethylene glycol (PEG) and 3-hydroxybutyrate-co-3-hydroxyvalerat (PHBV) to deliver betamethasone to the back of the eye in the treatment of retinopathy. PHBV polymer has been selected as the main polymer with a certain ratio of drug to polymer for fabrication of enamel and different amounts of PEG with three molecular weights used as pore generators to control drug release over a period of time. Based on the analysis of the results of differential scanning calorimetry (DSC) and FTIR spectroscopy, none of the polymers were degraded in the temperature range of the manufacturing process, and among betamethasone derivatives, the best option for implant preparation is the use of its basic form. Drug release studies over a period of three months showed that implants containing PHBV HV2% and PEG 6000 had a more appropriate release profile.


Asunto(s)
Implantes Absorbibles , Betametasona/farmacocinética , Diseño de Fármacos , Poliésteres/farmacocinética , Antiinflamatorios/síntesis química , Antiinflamatorios/farmacocinética , Betametasona/análogos & derivados , Betametasona/síntesis química , Preparaciones de Acción Retardada/síntesis química , Preparaciones de Acción Retardada/farmacocinética , Implantes de Medicamentos , Liberación de Fármacos , Poliésteres/síntesis química , Polietilenglicoles/síntesis química , Polietilenglicoles/farmacocinética
12.
Fish Physiol Biochem ; 47(2): 477-486, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33569680

RESUMEN

Several methods have been used to accelerate previtellogenesis and vitellogenesis stages in fish, including hormonal induction, sustained-release delivery systems, and oral delivery of gonadotropin-releasing hormone (GnRH). In this study, we proposed the oral administration of GnRH analog + nanoparticles of chitosan to accelerate oogenesis in goldfish as a model fish in reproductive biology and aquaculture. In this regard, adult female goldfish were fed with six experimental groups: chitosan, 50 µg GnRHa/kg b.w., 100 µg GnRHa/kg b.w., chitosan + 50 µg GnRHa/kg b.w., and chitosan + 100 µg GnRHa/kg b.w., and diet without any additive as the control for 40 days in triplicate. Every 10 days, ovarian samples were collected, and gonadosomatic index (GSI), oocyte diameter (OD), zona radiata thickness (Zr), and diameter of the follicular layer (Fl) were measured to assess ovarian developmental stage for each treatment. Additionally, blood sampling was done to measure serum 17ß-estradiol concentration at the end of the experiment. All parameters remained unchanged during the experiment in the chitosan-fed group. In the group fed with 100 µg GnRH or chitosan nanoparticle + 100 µg GnRHa, these parameters in general were increased. However, the effects in 50 µg GnRHa or chitosan nanoparticle + 50 µg GnRHa treatments were uncertain; they affected serum E2 levels as a trend toward a significant increase was observed in goldfish treated with chitosan nanoparticle + 100 µg GnRHa. Finally, the results indicated the oral administration of chitosan + 100 µg GnRHa/kg b.w. significantly accelerated the oocyte development and growth of ovary.


Asunto(s)
Quitosano/química , Carpa Dorada , Hormona Liberadora de Gonadotropina/farmacología , Nanopartículas/química , Oogénesis/efectos de los fármacos , Administración Oral , Animales , Femenino , Hormona Liberadora de Gonadotropina/administración & dosificación , Hormona Liberadora de Gonadotropina/química , Oocitos/efectos de los fármacos , Oocitos/crecimiento & desarrollo
13.
Expert Opin Drug Deliv ; 18(7): 877-889, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33455479

RESUMEN

INTRODUCTION: Adequate transfection efficiency is indispensable to safe and effective delivery of therapeutically active agents, particularly in cancer. Endosomal escape is regarded as a critical and determining step devoted a significant number of studies of the drug/gene delivery field. AREAS COVERED: This paper critically reviews the fundamental properties of chloroquine (CQ), its pharmacokinetics, pharmacodynamics, and clinical applications and the present knowledge of CQ application as an endosomal escape enhancing agent. Different approaches to enhance the endosomal escape process of nanoparticles have been introduced including use of endosomal escape enhancing agents. Application of CQ as either a pre-treatment modality in which cells or animals are exposed to CQ prior to the main treatment or a component of co-delivery systems where CQ and other anti-cancer agents are simultaneously entered the cancer cells, is discussed with recent studies. EXPERT OPINION: CQ is founded to intervene with the natural process of endosomal maturation. Moreover, CQ seems to increase the effectiveness of gene delivery by its electrostatic interaction with negatively charged components of the transferred genetic molecules. Endosomal escape might be regarded as the bottleneck of efficient gene delivery and CQ as an effective and available endosomal escape enhancing agent deserves more sophisticated studies.


Asunto(s)
Nanopartículas , Preparaciones Farmacéuticas , Animales , Cloroquina/farmacología , Endosomas , Humanos , Transfección
14.
J Drug Target ; 29(2): 185-198, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32772739

RESUMEN

Cancer is considered as one of the biggest threats to humans worldwide. Researchers suggest that tumour is not just a single mass, it comprises cancerous cells surrounded by noncancerous cells such as immune cells, adipocytes and cancer stem cells (CSCs) in the extracellular matrix (ECM) containing distinct components such as proteins, glycoproteins and enzymes; thus tumour microenvironment (TME) is partially complex. Multiple interactions happen in the dynamic microenvironment (ME) lead to an acidic, hypoxic and stiff ME that is considered as one of the major contributors to cancer progression and metastasis. Furthermore, TME involves in drug resistance mechanisms and affects enhanced permeability and retention (EPR) in tumours. In such a scenario, the first step to accomplish satisfying results is the identification and recognition of this ME. Then designing proper drug delivery systems can perform selectively towards cancerous cells. In this way, several targeting and stimuli/enzyme responsive drug delivery systems have been designed. More importantly, it is necessary to design a drug delivery system that can penetrate deeper into the tumours, efficiently and selectively. Various drug delivery systems such as exosomes and size-switchable nanocarriers (NCs) could decrease side effects and increase tumour treatment results by selective accumulation in tumours. In this review, TME features, current drug delivery approaches, challenges and promising strategies towards cancer treatment are discussed.


Asunto(s)
Antineoplásicos/administración & dosificación , Sistemas de Liberación de Medicamentos , Neoplasias/tratamiento farmacológico , Animales , Antineoplásicos/farmacología , Progresión de la Enfermedad , Resistencia a Antineoplásicos , Humanos , Nanomedicina , Nanopartículas , Neoplasias/patología , Células Madre Neoplásicas/metabolismo , Microambiente Tumoral/efectos de los fármacos
15.
Curr Drug Deliv ; 18(1): 31-43, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32753014

RESUMEN

AIM: Polyamidoamine (PAMAM) dendrimers are attracting interest of the scientists as vehicles for nucleic acid delivery due to their suitable properties. The highly positive surface charged of PAMAM enables an adequate interaction with negatively charged microRNAs. PURPOSE: The purpose of this study is to investigate the anti-tumor effect of microRNA Mimic let-7b loaded in PAMAM dendrimers (G5) on Non-Small Cell Lung Cancer (NSCLC) cells. OBJECTIVE: In order to increase the anti-tumor effect, chloroquine is employed to enhance the endosomal escape which is counted as a limitation in the advancement of gene delivery. Nanoparticles (NPs) were coated with natural polysaccharide "Hyaluronic Acid (HA)" to develop biodegradable carriers with targeting moiety for over-expressed CD44 receptors on NSCLC cells. The size and zeta potential measurements, gel retardation, cellular uptake, cell viability and gene expression studies were investigated for the designed delivery system. RESULTS: DLS analysis showed monodispersed small nanoparticles, which was in agreement with TEM results. Remarkably, NPs in the cells pretreated with chloroquine exhibited the highest cytotoxicity and were capable of inducing apoptosis. In cellular uptake study, NPs labeled with Fluorescein Isothiocyanate (FITC), were successfully taken up in cancer cells. Moreover, the expression study of three genes linked with cancer initiation and development in NSCLC, including KRAS, p-21, and BCL-2 indicated a decrease in KRAS and BCL-2 (oncogenic and anti-apoptotic genes) and increase in p-21 (apoptotic gene). CONCLUSION: All factors considered, the results declare that application of let-7b-loaded PAMAM-HA NPs in combination with chloroquine can be a promising therapeutic option in cancer cells inhibition. This fact has frequently been highlighted by many researchers upon the potentials of micro RNA delivery in cancer cells.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Cloroquina/farmacología , Dendrímeros , Ácido Hialurónico/química , Neoplasias Pulmonares , MicroARNs , Poliaminas/química , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , MicroARNs/genética
16.
AAPS PharmSciTech ; 21(8): 314, 2020 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-33165678

RESUMEN

Drug delivery to vitreous in comparison with drug delivery to the other parts of the eye is complicated and challenging due to the existence of various anatomical and physiological barriers. Developing injectable intra-vitreal implant could be beneficial in this regard. Herein, poly(hydroxybutyrate-co-valerate) (PHBV) implants were fabricated and optimized using response surface method for budesonide (BZ) delivery. The acquired implants were characterized in regard to the stability of the ingredients during fabrication process, drug loading amount, and drug release pattern (in PBS-HA-A and in vitreous medium). According to this research and statistical analysis performed, first HV% (hydroxyvalerate) then molecular weight and ratio of PEG as pore former affect respectively release rate and burst strength of BZ with different coefficients. Drug release profile in rabbit eye correlated well with that of in vitro (R2 = 0.9861, p Ë‚ 0.0001). No significant changes were seen in ERG waves, intraocular pressure, and histological studies during the in vivo part of the project. Using 8% HV, 20% PEG/PHBV, and higher molecular weight PEG (i.e., 6000), the optimum formulation was achieved. Toxicity and biocompatibility of the optimized formulation, which were evaluated in vivo, indicated the suitability of design implant for intra-vitreal BZ delivery. Grapical abstract.


Asunto(s)
Antiinflamatorios/administración & dosificación , Budesonida/administración & dosificación , Implantes de Medicamentos , Hidroxibutiratos/administración & dosificación , Cuerpo Vítreo , Animales , Liberación de Fármacos , Técnicas In Vitro , Peso Molecular , Nanopartículas , Poliésteres , Polímeros/administración & dosificación , Conejos
17.
Biomacromolecules ; 21(12): 4737-4746, 2020 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-32946219

RESUMEN

This study investigated the application of a temperature-responsive methylcellulose-hyaluronic acid (MC-HA) hydrogel to support 3D cell growth in vitro. Initial work focused on the preparation of hydrogels for 3D culture, followed by investigations of the biological compatibility of hydrogel components and optimization of the cell culture environment. Evaluation of viability and proliferation of HCT116 cells cultured in the MC-HA hydrogel was used to adjust the blend composition to design a hydrogel with optimal properties to support cell growth. Two important aspects in terms of the application of the proposed polymeric matrix in 3D cell culture were demonstrated: (i) 3D cultured cell aggregates can be released/recovered from the matrix via a gentle procedure that will preserve cell viability and (ii) the hydrogel matrix is amenable to application in a 96-well plate format as a standard approach employed in in vitro tissue culture tests. The work therefore shows that MC-HA hydrogels demonstrate potential for in vitro 3D cell culture as inexpensive and well-defined alternatives to animal-derived or complex synthetic systems.


Asunto(s)
Hidrogeles , Metilcelulosa , Animales , Técnicas de Cultivo de Célula , Ácido Hialurónico , Temperatura
18.
J Drug Target ; 28(7-8): 818-830, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32452217

RESUMEN

Many biological mechanisms including cellular metabolism and cell death are regulated by mitochondria known as powerhouse of the cell. Recently, let-7b, a tumour-suppressor microRNA has been detected in mitochondria of human cells targeting several mitochondrial-encoded respiratory chain genes. Triphenylphosphonium cation (TPP) is one of the major classes of mitochondriotropics that possess the ability of specifically targeting the mitochondria. PAMAM dendrimers are one of the most available agents in gene delivery due to their well-defined and beneficial features such as large density of surface functional groups. Hyaluronic acid (HA), a natural polysaccharide has been demonstrated to have the abilities such as good biocompatibility and targeting CD44 overexpressed receptors on non-small cell lung cancer (NSCLC) cells. In this research, let-7b-PAMAM (G5)-TPP and let-7b-PAMAM (G5)-TPP-HA nano-carriers were designed to deliver let-7b miRNA mimic to NSCLC cells' mitochondria as a novel way of cancer cells inhibition. Nano-carriers were capable of being successfully taken up by A549 cells and localised in mitochondria environment. Let-7b loaded nanoparticles reduced cell viability and induced apoptosis significantly. Expression of genes involved in mitochondrial oxidative function was decreased resulting in nanoparticles effect on mitochondria. Application of mitochondria targeted-miRNA delivery systems could regulate cellular functions to inhibit lung cancer.


Asunto(s)
Dendrímeros/química , Expresión Génica/efectos de los fármacos , MicroARNs/administración & dosificación , MicroARNs/farmacología , Mitocondrias/efectos de los fármacos , Células A549 , Apoptosis/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Nanopartículas/química
20.
Drug Dev Ind Pharm ; 46(2): 318-328, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31976771

RESUMEN

Uncontrolled distribution of nanoparticles (NPs) within the body can significantly decrease the efficiency of drug therapy and is considered among the main restrictions of NPs application. The aim of this study was to develop a depot combination delivery system (CDS) containing fingolimod loaded poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) NPs dispersed into a matrix of oleic acid-grafted-aminated alginate (OA-g-AAlg) to minimize the nonspecific biodistribution (BD) of PHBV NPs. OA-g-AAlg was synthesized in two step; First, Alg was aminated by using adipic dihydrazide (ADH). The degree of hyrazide group substitution of Alg was determined by trinitro-benzene-sulfonic acid (TNBS) assay. Second, OA was attached to AAlg through formation of an amide bond. Chemical structure of OA-g-AAlg was confirmed with FTIR and HNMR spectroscopy. Furthermore, rheological properties of OA-g-AAlg with different grafting ratios were evaluated. In-vitro release studies indicated that 47% of fingolimod was released from the CDS within 28 days. Blood and tissue samples were analyzed using liquid chromatography/tandem mass spectrometry following subcutaneous (SC) injection of fingolimod-CDS into Wistar rats. The elimination phase half-life of CDS-fingolimod was significantly higher than that of fingolimod (∼32 d vs. ∼20 h). To investigate the therapeutic efficacy, lymphocyte count was assessed over a 40 day period in Wistar rats. Peripheral blood lymphocyte count decreased from baseline by 27 ± 8% in 2 days after injection. Overall, the designed CDS represented promising results in improving the pharmacokinetic properties of fingolimod. Therefore, we believe that this sustained release formulation has a great potential to be applied to delivery of various therapeutics.


Asunto(s)
Alginatos/química , Clorhidrato de Fingolimod/química , Nanopartículas/química , Poliésteres/química , Animales , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacocinética , Preparaciones de Acción Retardada/farmacología , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/métodos , Clorhidrato de Fingolimod/farmacocinética , Clorhidrato de Fingolimod/farmacología , Interacciones Hidrofóbicas e Hidrofílicas , Masculino , Ratas , Ratas Wistar , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...