Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 8(12): e81175, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24324673

RESUMEN

BACKGROUND: Adipocyte renewal from preadipocytes occurs throughout the lifetime and contributes to obesity. To date, little is known about the mechanisms that control preadipocyte proliferation and differentiation. Prokineticin-2 is an angiogenic and anorexigenic hormone that activate two G protein-coupled receptors (GPCRs): PKR1 and PKR2. Prokineticin-2 regulates food intake and energy metabolism via central mechanisms (PKR2). The peripheral effect of prokineticin-2 on adipocytes/preadipocytes has not been studied yet. METHODOLOGY/PRINCIPAL FINDINGS: Since adipocytes and preadipocytes express mainly prokineticin receptor-1 (PKR1), here, we explored the role of PKR1 in adipose tissue expansion, generating PKR1-null (PKR1(-/-)) and adipocyte-specific (PKR1(ad-/-)) mutant mice, and using murine and human preadipocyte cell lines. Both PKR1(-/-) and PKR1(ad-/-) had excessive abdominal adipose tissue, but only PKR1(-/-) mice showed severe obesity and diabetes-like syndrome. PKR1(ad-/-)) mice had increased proliferating preadipocytes and newly formed adipocyte levels, leading to expansion of adipose tissue. Using PKR1-knockdown in 3T3-L1 preadipocytes, we show that PKR1 directly inhibits preadipocyte proliferation and differentiation. These PKR1 cell autonomous actions appear targeted at preadipocyte cell cycle regulatory pathways, through reducing cyclin D, E, cdk2, c-Myc levels. CONCLUSIONS/SIGNIFICANCE: These results suggest PKR1 to be a crucial player in the preadipocyte proliferation and differentiation. Our data should facilitate studies of both the pathogenesis and therapy of obesity in humans.


Asunto(s)
Adipocitos/metabolismo , Adipocitos/patología , Diferenciación Celular , Obesidad/patología , Receptores Acoplados a Proteínas G/metabolismo , Células 3T3-L1 , Grasa Abdominal/patología , Adipogénesis , Animales , Proliferación Celular , Diabetes Mellitus/patología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
2.
J Am Heart Assoc ; 2(5): e000411, 2013 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-24152983

RESUMEN

BACKGROUND: Reciprocal relationships between endothelial dysfunction and insulin resistance result in a vicious cycle of cardiovascular, renal, and metabolic disorders. The mechanisms underlying these impairments are unclear. The peptide hormones prokineticins exert their angiogenic function via prokineticin receptor-1 (PKR1). We explored the extent to which endothelial PKR1 contributes to expansion of capillary network and the transcapillary passage of insulin into the heart, kidney, and adipose tissues, regulating organ functions and metabolism in a specific mice model. METHODS AND RESULTS: By combining cellular studies and studies in endothelium-specific loss-of-function mouse model (ec-PKR1-/-), we showed that a genetically induced PKR1 loss in the endothelial cells causes the impaired capillary formation and transendothelial insulin delivery, leading to insulin resistance and cardiovascular and renal disorders. Impaired insulin delivery in endothelial cells accompanied with defective expression and activation of endothelial nitric oxide synthase in the ec-PKR1-/- aorta, consequently diminishing endothelium-dependent relaxation. Despite having a lean body phenotype, ec-PKR1-/- mice exhibited polyphagia, polydipsia, polyurinemia, and hyperinsulinemia, which are reminiscent of human lipodystrophy. High plasma free fatty acid levels and low leptin levels further contribute to the development of insulin resistance at the later age. Peripheral insulin resistance and ectopic lipid accumulation in mutant skeletal muscle, heart, and kidneys were accompanied by impaired insulin-mediated Akt signaling in these organs. The ec-PKR1-/- mice displayed myocardial fibrosis, low levels of capillary formation, and high rates of apoptosis, leading to diastolic dysfunction. Compact fibrotic glomeruli and high levels of phosphate excretion were found in mutant kidneys. PKR1 restoration in ec-PKR1-/- mice reversed the decrease in capillary recruitment and insulin uptake and improved heart and kidney function and insulin resistance. CONCLUSIONS: We show a novel role for endothelial PKR1 signaling in cardiac, renal, and metabolic functions by regulating transendothelial insulin uptake and endothelial cell proliferation. Targeting endothelial PKR1 may serve as a therapeutic strategy for ameliorating these disorders.


Asunto(s)
Capilares/crecimiento & desarrollo , Fenómenos Fisiológicos Cardiovasculares , Endotelio Vascular/metabolismo , Corazón/fisiología , Resistencia a la Insulina/fisiología , Insulina/metabolismo , Receptores Acoplados a Proteínas G/fisiología , Animales , Proliferación Celular , Endotelio Vascular/citología , Masculino , Ratones , Ratones Transgénicos
3.
Arterioscler Thromb Vasc Biol ; 31(4): 842-50, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21273561

RESUMEN

OBJECTIVE: Prokineticins are potent angiogenic hormones that use 2 receptors, prokineticin receptor-1 (PKR1) and PKR2, with important therapeutic use in anticancer therapy. Observations of cardiac and renal toxicity in cancer patients treated with antiangiogenic compounds led us to explore how PKR1 signaling functioned in heart and kidney in vivo. METHODS AND RESULTS: We generated mice with a conditional disruption of the PKR1 gene. We observed that PKR1 loss led to cardiomegaly, severe interstitial fibrosis, and cardiac dysfunction under stress conditions, accompanied by renal tubular dilation, reduced glomerular capillaries, urinary phosphate excretion, and proteinuria at later ages. Abnormal mitochondria and increased apoptosis were evident in both organs. Perturbation of capillary angiogenesis in both organs was restored at the adult stage potentially via upregulation of hypoxia-inducible factor-1 and proangiogenic factors. Compensatory mechanism could not revoke the epicardial and glomerular capillary networks, because of increased apoptosis and reduced progenitor cell numbers, consistent with an endogenous role of PKR1 signaling in stimulating epicardin+ progenitor cell proliferation and differentiation. CONCLUSIONS: Here, we showed for the first time that the loss of PKR1 causes renal and cardiac structural and functional changes because of deficits in survival signaling, mitochondrial, and progenitor cell functions in found both organs.


Asunto(s)
Silenciador del Gen , Cardiopatías/genética , Enfermedades Renales/genética , Riñón/metabolismo , Miocardio/metabolismo , Receptores Acoplados a Proteínas G/genética , Envejecimiento , Animales , Apoptosis , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Predisposición Genética a la Enfermedad , Cardiopatías/metabolismo , Cardiopatías/patología , Cardiopatías/fisiopatología , Riñón/patología , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Enfermedades Renales/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Miocardio/patología , Neovascularización Fisiológica , Fenotipo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Células Madre/metabolismo , Células Madre/patología , Función Ventricular Izquierda
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...