RESUMEN
We study the adhesion between differently processed glass and filled bromobutyl rubber in dry conditions, in water, and in silicone oil. The boundary line between contact and non-contact in adhesion experiments can be considered as a mode I crack, and we show that viscoelastic energy dissipation, close to the opening (or closing) crack tip and surface roughness, strongly affects the work of adhesion. We observe strong adhesion hysteresis and, in contrast to the Johnson-Kendall-Roberts theory prediction for elastic solids, this results in a pull-off force (and work of adhesion) which depends on the loading force and contact time. In particular, for the system immersed in water and silicone oil, we register very weak adhesive bonding. For glass ball with baked-on silicone oil, the pull-off force is nearly independent of the contact time, but this is not observed for the unprocessed glass surface.
RESUMEN
Adhesion between a glass ball and a polydimethylsiloxane (PDMS) sample is dependent on the PDMS cross-link density, and the transformation of the material from the uncrosslinked liquid state to the fully crosslinked solid state is investigated in this study. The physical picture reflected a gradual transition from capillary forces driven contact mechanics to the classical Johnson-Kendall-Roberts (JKR)-type contact mechanics. PDMS was produced by mixing the base fluid and a cross-linker at a ratio of 10 : 1 and allowed to slowly cross-link at room temperature with simultaneous measurement of the ball-PDMS interaction force. The PDMS sample was in the liquid state during the first ≈16 hours, and in this case the ball-PDMS interaction was purely adhesive, i.e., no repulsive interaction was observed. Later at the PDMS gel-point the cross-linked PDMS clusters percolate, converting the fluid into a soft (fluid-filled) poroelastic solid. In the transition period, PDMS appears similar to pressure-sensitive adhesives. There we observe so-called "stringing" and permanent deformation of the material impacted by the ball. At room temperature, it takes more than â¼100 hours for PDMS to fully cross-link that can be confirmed by the comparison with the earlier-studied reference PDMS produced at elevated temperatures.
RESUMEN
We study the adhesion, friction and leak rate of seals for four different elastomers: Acrylonitrile Butadiene Rubber (NBR), Ethylene Propylene Diene (EPDM), Polyepichlorohydrin (GECO) and Polydimethylsiloxane (PDMS). Adhesion between smooth clean glass balls and all the elastomers is studied both in the dry state and in water. In water, adhesion is observed for the NBR and PDMS elastomers, but not for the EPDM and GECO elastomers, which we attribute to the differences in surface energy and dewetting. The leakage of water is studied with rubber square-ring seals squeezed against sandblasted glass surfaces. Here we observe a strongly non-linear dependence of the leak rate on the water pressure ΔP for the elastomers exhibiting adhesion in water, while the leak rate depends nearly linearly on ΔP for the other elastomers. We attribute the non-linearity to some adhesion-related phenomena, such as dewetting or the (time-dependent) formation of gas bubbles, which blocks fluid flow channels. Finally, rubber friction is studied at low sliding speeds using smooth glass and sandblasted glass as substrates, both in the dry state and in water. The measured friction coefficients are compared to theory, and the origin of the frictional shear stress acting in the area of real contact is discussed. The NBR rubber, which exhibits the strongest adhesion both in the dry state and in water, also shows the highest friction both in the dry state and in water.
RESUMEN
Adhesion between glass and bromobutyl and polydimethylsiloxane elastomers is investigated. We show that viscoelastic energy dissipation close to the opening (or closing) crack tip, and surface roughness, strongly affect the work of adhesion. We observe strong adhesion hysteresis and we show, in contrast to the Johnson-Kendall-Roberts theory prediction for elastic solids, that this results in a pull-off force, and effective work of adhesion to be dependent on the maximum loading force.
RESUMEN
Adhesion between silica glass or acrylic balls and silicone elastomers and various industrial rubbers is investigated. The work of adhesion during pull-off is found to strongly vary depending on the system, which we attribute to the two opposite effects: (1) viscoelastic energy dissipation close to an opening crack tip and (2) surface roughness. Introducing surface roughness on the glass ball is found to increase the work of adhesion for soft elastomers, while for the stiffer elastomers it results in a strong reduction in the work of adhesion. For the soft silicone elastomers a strong increase in the work of adhesion with increasing pull-off velocity is observed, which may result from the non-adiabatic processes associated with molecular chain pull-out. In general, the work of adhesion is decreased after repeated contacts due to the transfer of molecules from the elastomers to the glass ball. Thus, extracting the free chains (oligomers) from the silicone elastomers is shown to make the work of adhesion independent of the number of contacts. The viscoelastic properties (linear and nonlinear) of all of the rubber compounds are measured, and the velocity dependent crack opening propagation energy at the interface is calculated. Silicone elastomers show a good agreement between the measured work of adhesion and the predicted results, but carbon black filled hydrogenated nitrile butadiene rubber compounds reveal that strain softening at the crack tip may play an important role in determining the work of adhesion. Additionally, adhesion measurement under submerged conditions in distilled water and water + soap solutions are also performed: a strong reduction in the work of adhesion is measured for the silicone elastomers submerged in water, and a complete elimination of adhesion is found for the water + soap solution attributed to an osmotic repulsion between the negatively charged surface of the glass and the elastomer.
RESUMEN
Nano-scale rods and particles having the axes of fivefold symmetry, i.e., pentagonal nanorods and nanoparticles, are theoretically and experimentally investigated. Such objects possess elastic strains and mechanical stresses. In the present research a new mechanism of stress relaxation in nanorods and nanoparticles is considered. The mechanism is implemented by a formation of a surface layer with crystal lattice mismatch. The elastic fields and energies for nanorods and nanoparticles with the mismatched layers are calculated in the framework of the disclination model. The optimal mismatch parameter giving the maximal energy release is determined. The threshold radius as the minimal radius of nanorods or nanoparticles for which the formation of the layer is energetically favorable, is found. The threshold radius is approximately 10 nm for nanoparticle and 100 nm for nanorod of typical FCC metal.