Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
1.
Microorganisms ; 12(7)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39065158

RESUMEN

OXA-244, an R214G variant of OXA-48, is silently spreading worldwide likely because of difficulties in detection using classical screening media. Here, we characterized two clinical isolates of Escherichia coli and Citrobacter youngae that displayed reduced susceptibility to carbapenems but were lacking significant carbapenemase activity as revealed by negative Carba NP test results. However, positive test results were seen for OXA-48-like enzymes by lateral flow immunoassays. WGS revealed the presence of a blaOXA-181-like gene that codes for OXA-484, an R214G variant of OXA-181. BlaOXA-484 gene was located on a 58.4-kb IncP1-like plasmid (pN-OXA-484), that upon transfer into E. coli HB4 with impaired permeability, conferred carbapenem and temocillin resistance (MICs > 32 mg/L). E. coli TOP10 (pTOPO-OXA-484) revealed reduced MICs in most substrates as compared to E. coli TOP10 (pTOPO-OXA-181), especially for imipenem (0.25 mg/L versus 0.75 mg/L) and temocillin (16 mg/L versus 1028 mg/L). Catalytic efficiencies of OXA-484 were reduced as compared to OXA-181 for most ß-lactams including imipenem and temocillin with 27.5- and 21.7-fold reduction, respectively. Molecular modeling confirmed that the salt bridges between R214, D159, and the R1 substituent's carboxylate group of temocillin were not possible with G214 in OXA-484, explaining the reduced affinity for temocillin. In addition, changes in active site's water network may explain the decrease in hydrolysis rate of carbapenems. OXA-484 has weak imipenem and temocillin hydrolytic activities, which may lead to silent spread due to underdetection using selective screening media or biochemical imipenem hydrolysis confirmatory tests.

2.
Euro Surveill ; 29(23)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38847120

RESUMEN

BackgroundThe war in Ukraine led to migration of Ukrainian people. Early 2022, several European national surveillance systems detected multidrug-resistant (MDR) bacteria related to Ukrainian patients.AimTo investigate the genomic epidemiology of New Delhi metallo-ß-lactamase (NDM)-producing Providencia stuartii from Ukrainian patients among European countries.MethodsWhole-genome sequencing of 66 isolates sampled in 2022-2023 in 10 European countries enabled whole-genome multilocus sequence typing (wgMLST), identification of resistance genes, replicons, and plasmid reconstructions. Five bla NDM-1-carrying-P. stuartii isolates underwent antimicrobial susceptibility testing (AST). Transferability to Escherichia coli of a bla NDM-1-carrying plasmid from a patient strain was assessed. Epidemiological characteristics of patients with NDM-producing P. stuartii were gathered by questionnaire.ResultswgMLST of the 66 isolates revealed two genetic clusters unrelated to Ukraine and three linked to Ukrainian patients. Of these three, two comprised bla NDM-1-carrying-P. stuartii and the third bla NDM-5-carrying-P. stuartii. The bla NDM-1 clusters (PstCluster-001, n = 22 isolates; PstCluster-002, n = 8 isolates) comprised strains from seven and four countries, respectively. The bla NDM-5 cluster (PstCluster-003) included 13 isolates from six countries. PstCluster-001 and PstCluster-002 isolates carried an MDR plasmid harbouring bla NDM-1, bla OXA-10, bla CMY-16, rmtC and armA, which was transferrable in vitro and, for some Ukrainian patients, shared by other Enterobacterales. AST revealed PstCluster-001 isolates to be extensively drug-resistant (XDR), but susceptible to cefiderocol and aztreonam-avibactam. Patients with data on age (n = 41) were 19-74 years old; of 49 with information on sex, 38 were male.ConclusionXDR P. stuartii were introduced into European countries, requiring increased awareness and precautions when treating patients from conflict-affected areas.


Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana Múltiple , Infecciones por Enterobacteriaceae , Pruebas de Sensibilidad Microbiana , Tipificación de Secuencias Multilocus , Plásmidos , Providencia , Secuenciación Completa del Genoma , beta-Lactamasas , Humanos , Ucrania/epidemiología , beta-Lactamasas/genética , Infecciones por Enterobacteriaceae/microbiología , Infecciones por Enterobacteriaceae/epidemiología , Infecciones por Enterobacteriaceae/tratamiento farmacológico , Farmacorresistencia Bacteriana Múltiple/genética , Providencia/genética , Providencia/aislamiento & purificación , Providencia/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Europa (Continente)/epidemiología , Plásmidos/genética , Masculino , Adulto , Femenino , Persona de Mediana Edad , Anciano , Adulto Joven
3.
J Glob Antimicrob Resist ; 38: 140-145, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38844258

RESUMEN

OBJECTIVES: Acinetobacter baumannii is classified by the centre for Disease Control and Prevention (CDC) as an "urgent threat" due to its ability to acquire and develop resistance to multiple classes of antibiotics. As a result, it is one of the most concerning pathogens in healthcare settings, with increasing incidence of infections due to carbapenem-resistant Acinetobacter baumannii (CRAB) associated with high morbidity and mortality rates. Therefore, there are ongoing efforts to find novel treatment options, one of which is cefiderocol. We aim to review available evidence on cefiderocol use for severe nosocomial pneumonia due to carbapenem-resistant Acinetobacter baumannii. METHODS: A comprehensive review was conducted from 2017 to 2023, covering articles from databases such as Pubmed, Scopus, and Embase, along with conference proceedings from ECCMID 2023. The primary focus was on severe nosocomial pneumonia due A. baumannii and cefiderocol. DISCUSSION: Cefiderocol, targeting periplasmic space Penicillin-Binding Proteins (PBPs) via siderophore transport pathways, exhibits promise against multi-drug resistant Gram-negative bacilli. Its effectiveness in treating CRAB pneumonia remains debated. The CREDIBLE trial reported higher mortality with cefiderocol compared to the best available treatment, while other cohort studies showed contrasting outcomes. Patient variations and pharmacokinetic factors may underlie these discrepancies. The recommended cefiderocol dosage regimen may fall short of desired pharmacokinetic targets, especially in critically ill patients and lung infections. Pulmonary factors hindering cefiderocol's entry into bacteria through iron transporters are overlooked in clinical breakpoints. Optimized dosing or combination regimens may enhance infection site exposure and outcomes. CONCLUSIONS: Further research is needed to determine the optimal cefiderocol dosage and administration (mono vs. dual therapy, continuous vs. intermittent infusion), in severe Acinetobacter baumannii nosocomial pneumonia.

4.
Respir Med Res ; 86: 101099, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38843604

RESUMEN

BACKGROUND AND OBJECTIVES: Although many symptoms of post-COVID syndrome have been described, a comprehensive evaluation of their prevalence is lacking. We aimed to describe symptoms at 16 months from hospitalization for COVID-19. METHODS: A telephone assessment was performed one year later in a cohort of COVID-19 survivors hospitalized between March and May 2020 and already evaluated four months after discharge. Patients with relevant symptoms at 16 months, patients who presented symptoms at four months, and all intensive care unit patients were invited for assessment at an outpatient facility. At telephone consultation, respiratory, cognitive, and functional symptoms were assessed. Patients underwent pulmonary function tests, lung CT scans, and psychometric and cognitive tests at the outpatient facility. RESULTS: Among 478 patients evaluated four months after discharge, 317 (67 %) were assessed at telephone consultation and 124 at ambulatory assessment. At telephone assessment, ≥1 new symptom was reported by 216 patients (68 %), mainly fatigue (53 %), dyspnea (37 %), and memory difficulties (24 %). Seventy-nine patients (25 %) were asymptomatic at four months but declared ≥1 symptom one year later. In patients evaluated twice, the prevalence of cognitive impairment was 45 % at four months and 40 % at 16 months. Depression and post-traumatic symptoms prevalence remained stable, and the prevalence of anxiety significantly decreased. Dysfunctional breathing was detected in 32 % of patients. At 16 months after discharge, lung CT-scan exhibited abnormalities in 30/80 patients (38 %), compared to 52/85 patients (61 %) at four months. CONCLUSION: At 16 months after hospitalization for COVID-19, 68 % of patients declared symptoms, including patients whose symptoms appeared between 4 and 16 months. TRIAL REGISTRATION: ClinicalTrials.gov, NCT04704388.

7.
Lancet Microbe ; 5(6): e547-e558, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677305

RESUMEN

BACKGROUND: Morganella spp are opportunistic pathogens involved in various infections. Intrinsic resistance to multiple antibiotics (including colistin) combined with the emergence of carbapenemase producers reduces the number of active antimicrobials. The aim of this study was to characterise genetic features related to the spread of carbapenem-resistant Morganella spp. METHODS: This comparative genomic study included extensively drug-resistant Morganella spp isolates collected between Jan 1, 2013, and March 1, 2021, by the French National Reference Center (NRC; n=68) and European antimicrobial resistance reference centres in seven European countries (n=104), as well as one isolate from Canada, two reference strains from the Pasteur Institute collection (Paris, France), and two colistin-susceptible isolates from Bicêtre Hospital (Kremlin-Bicêtre, France). The isolates were characterised by whole-genome sequencing, antimicrobial susceptibility testing, and biochemical tests. Complete genomes from GenBank (n=103) were also included for genomic analysis, including phylogeny and determination of core genomes and resistomes. Genetic distance between different species or subspecies was performed using average nucleotide identity (ANI). Intrinsic resistance mechanisms to polymyxins were investigated by combining genetic analysis with mass spectrometry on lipid A. FINDINGS: Distance analysis by ANI of 275 isolates identified three groups: Morganella psychrotolerans, Morganella morganii subspecies sibonii, and M morganii subspecies morganii, and a core genome maximum likelihood phylogenetic tree showed that the M morganii isolates can be separated into four subpopulations. On the basis of these findings and of phenotypic divergences between isolates, we propose a modified taxonomy for the Morganella genus including four species, Morganella psychrotolerans, Morganella sibonii, Morganella morganii, and a new species represented by a unique environmental isolate. We propose that M morganii include two subspecies: M morganii subspecies morganii (the most prevalent) and M morganii subspecies intermedius. This modified taxonomy was supported by a difference in intrinsic resistance to tetracycline and conservation of metabolic pathways such as trehalose assimilation, both only present in M sibonii. Carbapenemase producers were mostly identified among five high-risk clones of M morganii subspecies morganii. The most prevalent carbapenemase corresponded to NDM-1, followed by KPC-2, and OXA-48. A cefepime-zidebactam combination was the most potent antimicrobial against the 172 extensively drug-resistant Morganella spp isolates in our collection from different European countries, which includes metallo-ß-lactamase producers. Lipid A analysis showed that the intrinsic resistance to colistin was associated with the presence of L-ARA4N on lipid A. INTERPRETATION: This global characterisation of, to our knowledge, the widest collection of extensively drug-resistant Morganella spp highlights the need to clarify the taxonomy and decipher intrinsic resistance mechanisms, and paves the way for further genomic comparisons. FUNDING: None.


Asunto(s)
Antibacterianos , Proteínas Bacterianas , Infecciones por Enterobacteriaceae , Genoma Bacteriano , Pruebas de Sensibilidad Microbiana , Morganella , Filogenia , beta-Lactamasas , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Antibacterianos/farmacología , Genoma Bacteriano/genética , Humanos , Infecciones por Enterobacteriaceae/microbiología , Infecciones por Enterobacteriaceae/epidemiología , Morganella/genética , Genómica , Secuenciación Completa del Genoma , Europa (Continente)/epidemiología , Carbapenémicos/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Colistina/farmacología
8.
Clin Infect Dis ; 79(1): 52-55, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38527853

RESUMEN

In a retrospective multicenter study of 575 patients with bloodstream infections or pneumonia due to wild-type AmpC ß-lactamase-producing Enterobacterales, species with low in vitro mutation rates for AmpC derepression were associated with fewer treatment failures due to AmpC overproduction (adjusted hazard ratio, 0.5 [95% CI, .2-.9]). However, compared to cefepime/carbapenems, using third-generation cephalosporins as definitive therapy remained associated with this adverse outcome (15% vs 1%).


Asunto(s)
Antibacterianos , Proteínas Bacterianas , Infecciones por Enterobacteriaceae , Enterobacteriaceae , Tasa de Mutación , beta-Lactamasas , Humanos , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Proteínas Bacterianas/genética , Estudios Retrospectivos , Antibacterianos/uso terapéutico , Antibacterianos/farmacología , Enterobacteriaceae/genética , Enterobacteriaceae/efectos de los fármacos , Enterobacteriaceae/enzimología , Infecciones por Enterobacteriaceae/tratamiento farmacológico , Infecciones por Enterobacteriaceae/microbiología , Persona de Mediana Edad , Masculino , Femenino , Pruebas de Sensibilidad Microbiana , Bacteriemia/tratamiento farmacológico , Bacteriemia/microbiología , Anciano , Cefalosporinas/uso terapéutico , Cefalosporinas/farmacología
9.
Antimicrob Agents Chemother ; 68(5): e0018024, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38526049

RESUMEN

OXA-48 has rapidly disseminated worldwide and become one of the most common carbapenemases in many countries with more than 45 variants reported with, in some cases, significant differences in their hydrolysis profiles. The R214 residue, located in the ß5-ß6 loop, is crucial for the carbapenemase activity, as it stabilizes carbapenems in the active site and maintains the shape of the active site through interactions with D159. In this study, we have characterized a novel variant of OXA-48, OXA-933 with a single D159N change. To evaluate the importance of this residue, point mutations were generated (D159A, D159G, D159K, and D159W), kinetic parameters of OXA-933, OXA-48 D159G, and OXA-48 D159K were determined and compared to those of OXA-48 and OXA-244. The blaOXA-933 gene was borne on Tn2208, a 2,696-bp composite transposon made of two IS1 elements surrounded by 9 bp target site duplications and inserted into a non-self-transmissible plasmid pOXA-933 of 7,872 bp in size. Minimal inhibitory concentration values of E. coli expressing the blaOXA-933 gene or of its point mutant derivatives were lower for carbapenems (except for D159G) as compared to those expressing the blaOXA-48 gene. Steady-state kinetic parameters revealed lower catalytic efficiencies for expanded spectrum cephalosporins and carbapenems. A detailed structural analysis confirmed the crucial role of D159 in shaping the active site of OXA-48 enzymes by interacting with R214. Our work further illustrates the remarkable propensity of OXA-48-like carbapenemases to evolve through mutations at positions outside the ß5-ß6 loop, but interacting with key residues of it.


Asunto(s)
Antibacterianos , Carbapenémicos , Escherichia coli , Pruebas de Sensibilidad Microbiana , Penicilinas , beta-Lactamasas , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Carbapenémicos/farmacología , Carbapenémicos/metabolismo , Hidrólisis , Antibacterianos/farmacología , Penicilinas/metabolismo , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Cinética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Elementos Transponibles de ADN/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mutación Puntual
10.
Euro Surveill ; 29(11)2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38487887

RESUMEN

BackgroundFrom 2019 to 2022, the French National Reference Centre for Antibiotic Resistance (NRC) received a total of 25 isolates of Enterobacter hormaechei subsp. hoffmannii sequence type (ST)1740. All produced metallo-ß-lactamase(s) and were from the Lyon area.AimTo understand these strains' spread and evolution, more extended microbiological and molecular analyses were conducted.MethodsPatients' demographics and specimen type related to isolates were retrieved. All strains underwent short-read whole genome sequencing, and for 15, long-read sequencing to understand carbapenemase-gene acquisition. Clonal relationships were inferred from core-genome single nt polymorphisms (SNPs). Plasmids and the close genetic environment of each carbapenemase-encoding gene were analysed.ResultsPatients (10 female/15 male) were on average 56.6 years old. Seven isolates were recovered from infections and 18 through screening. With ≤ 27 SNPs difference between each other's genome sequences, the 25 strains represented a clone dissemination. All possessed a chromosome-encoded bla NDM-1 gene inside a composite transposon flanked by two IS3000. While spreading, the clone independently acquired a bla VIM-4-carrying plasmid of IncHI2 type (n = 12 isolates), or a bla IMP-13-carrying plasmid of IncP-1 type (n = 1 isolate). Of the 12 isolates co-producing NDM-1 and VIM-4, seven harboured the colistin resistance gene mcr9.2; the remaining five likely lost this gene through excision.ConclusionThis long-term outbreak was caused by a chromosome-encoded NDM-1-producing ST1740 E. hormaechei subsp. hoffmannii clone, which, during its dissemination, acquired plasmids encoding VIM-4 or IMP-13 metallo-ß-lactamases. To our knowledge, IMP-13 has not prior been reported in Enterobacterales in France. Epidemiological and environmental investigations should be considered alongside microbiological and molecular ones.


Asunto(s)
Enterobacter , beta-Lactamasas , Masculino , Femenino , Humanos , Persona de Mediana Edad , Enterobacter/genética , beta-Lactamasas/genética , Plásmidos/genética , Colistina , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana
12.
Int J Antimicrob Agents ; 63(5): 107115, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38367844

RESUMEN

INTRODUCTION: The ESCPM group (Enterobacter species including Klebsiella aerogenes - formerly Enterobacter aerogenes, Serratia species, Citrobacter freundii complex, Providencia species and Morganella morganii) has not yet been incorporated into systematic surveillance programs. METHODS: We conducted a multicentre retrospective observational study analysing all ESCPM strains isolated from blood cultures in 27 European hospitals over a 3-year period (2020-2022). Diagnostic approach, epidemiology, and antimicrobial susceptibility were investigated. RESULTS: Our study comprised 6,774 ESCPM isolates. MALDI-TOF coupled to mass spectrometry was the predominant technique for bacterial identification. Susceptibility to new ß-lactam/ß-lactamase inhibitor combinations and confirmation of AmpC overproduction were routinely tested in 33.3% and 29.6% of the centres, respectively. The most prevalent species were E. cloacae complex (44.8%) and S. marcescens (22.7%). Overall, third-generation cephalosporins (3GC), combined third- and fourth-generation cephalosporins (3GC + 4GC) and carbapenems resistance phenotypes were observed in 15.7%, 4.6%, and 9.5% of the isolates, respectively. AmpC overproduction was the most prevalent resistance mechanism detected (15.8%). Among carbapenemase-producers, carbapenemase type was provided in 44.4% of the isolates, VIM- (22.9%) and OXA-48-enzyme (16%) being the most frequently detected. E. cloacae complex, K. aerogenes and Providencia species exhibited the most notable cumulative antimicrobial resistance profiles, with the former displaying 3GC, combined 3GC + 4GC and carbapenems resistance phenotypes in 15.2%, 7.4%, and 12.8% of the isolates, respectively. K. aerogenes showed the highest rate of both 3GC resistant phenotype (29.8%) and AmpC overproduction (32.1%), while Providencia species those of both carbapenems resistance phenotype (42.7%) and carbapenemase production (29.4%). ESCPM isolates exhibiting both 3GC and combined 3GC + 4GC resistance phenotypes displayed high susceptibility to ceftazidime/avibactam (98.2% and 95.7%, respectively) and colistin (90.3% and 90.7%, respectively). Colistin emerged as the most active drug against ESCPM species (except those intrinsically resistant) displaying both carbapenems resistance phenotype (85.8%) and carbapenemase production (97.8%). CONCLUSIONS: This study presented a current analysis of ESCPM species epidemiology in Europe, providing insights to inform current antibiotic treatments and guide strategies for antimicrobial stewardship and diagnostics.


Asunto(s)
Antibacterianos , Proteínas Bacterianas , Infecciones por Enterobacteriaceae , Enterobacteriaceae , Pruebas de Sensibilidad Microbiana , beta-Lactamasas , Humanos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Europa (Continente)/epidemiología , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Estudios Retrospectivos , Infecciones por Enterobacteriaceae/microbiología , Infecciones por Enterobacteriaceae/epidemiología , Infecciones por Enterobacteriaceae/tratamiento farmacológico , Antibacterianos/farmacología , Enterobacteriaceae/efectos de los fármacos , Enterobacteriaceae/genética , Enterobacteriaceae/enzimología , Enterobacteriaceae/aislamiento & purificación , Hospitales , Inhibidores de beta-Lactamasas/farmacología , Farmacorresistencia Bacteriana Múltiple
15.
Future Microbiol ; 19: 61-72, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38180334

RESUMEN

Rapidly detecting and identifying pathogens is crucial for appropriate antimicrobial therapy in patients with sepsis. Conventional diagnostic methods have been a great asset to medicine, though they are time consuming and labor intensive. This work will enable healthcare professionals to understand the bacterial community better and enhance their diagnostic capacity by using novel molecular methods that make obtaining quicker, more precise results possible. The authors discuss and critically assess the merits and drawbacks of molecular testing and the added value of these tests, including the shift turnaround time, the implication for clinicians' decisions, gaps in knowledge, future research directions and novel insights or innovations. The field of antimicrobial molecular testing has seen several novel insights and innovations to improve the diagnosis and management of infectious diseases.


Sepsis is a life-threatening reaction to an infection. This infection is normally caused by a bacteria. Identifying the bacteria that has caused the infection is very important to choosing the best treatment. This is usually done using molecular testing. This article discusses the advantages and disadvantages of molecular testing, which tests are available and the value of these tests in clinical practice, the implication of molecular tests for clinicians' decisions and the gaps in our knowledge. It also discusses future innovations in molecular testing.


Asunto(s)
Antiinfecciosos , Sepsis , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Sepsis/diagnóstico , Sepsis/tratamiento farmacológico , Sepsis/microbiología , Bacterias/genética , Antiinfecciosos/farmacología , Antiinfecciosos/uso terapéutico , Factores de Tiempo
16.
Eur J Clin Microbiol Infect Dis ; 43(4): 777-784, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38277033

RESUMEN

The combination of ceftazidime-avibactam (CAZ-AVI) and aztreonam (ATM) is used to treat MBL-producing Enterobacterales-related infections. The new combination aztreonam-avibactam (AZA) is currently in development. We compared results obtained with the new MIC test strip (MTS) AZA (Liofilchem) with broth microdilution method (BMD) on 41 MBL-producing Enterobacterales from 41 clinical samples. The MTS AZA was also compared to combination testing method using CAZ-AVI and ATM strips. Compared to BMD, categorical agreement (CA) was 100%. Compared with combination testing method, CA was 97.6%. The MTS AZA can be used to determine MICs levels of AZA or CAZ-AVI/ATM combinations.


Asunto(s)
Antibacterianos , Compuestos de Azabiciclo , Aztreonam , Humanos , Aztreonam/farmacología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Ceftazidima/uso terapéutico , beta-Lactamasas , Combinación de Medicamentos , Pruebas de Sensibilidad Microbiana
17.
Clin Microbiol Infect ; 30(3): 397.e1-397.e4, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38065362

RESUMEN

OBJECTIVES: The early identification of carbapenemase-producing Enterobacterales (CPE) is required to prevent their spread and initiate proper therapy. Accordingly, it is crucial to develop efficient algorithms using susceptibility testing results to discriminate non-carbapenemase producers (non-CPE) from those that require complementary tests. In 2022, to adapt its recommendations to the evolution of CPE epidemiology (increased prevalence of OXA-244 producers), the Antibiogram Committee of the French Society of Microbiology (CA-SFM) proposed a new algorithm for the screening of CPE. We compared this algorithm to the former algorithm (2015-2021). METHODS: From July 2022 to January 2023, all nonduplicate enterobacterial isolates referred to French National Reference Centre for carbapenemase detection (n = 518) were subjected to the former CA-SFM algorithm (2015 to 2021) using inhibition diameters of ertapenem, ticarcillin-clavulanate, temocillin and meropenem or imipenem, and the novel CA-SFM algorithm (since 2022) using inhibition diameters of ceftazidime-avibactam, temocillin, and meropenem or imipenem. RESULTS: Sensitivity, specificity, negative predictive value, and positive predictive value were of 80.8% (CI95 76.3%-84.6%), 66.2% (58.1%-73.5%), 59.3% (51.5%-66.6%), and 85.0% (80.7% - 88.5%) for the old CA-SFM algorithm and 97.8% (95.5%-99.0%), 45.5% (37.5%-53.7%), 89.7% (80.3%-95.2%), and 80.9% (76.9%-84.4%) for the novel CA-SFM algorithm. DISCUSSION: The novel CA-SFM algorithm possesses the best performance for the screening of CPE particularly in countries with a high prevalence of OXA-48-like producers.


Asunto(s)
Infecciones por Enterobacteriaceae , Penicilinas , beta-Lactamasas , Humanos , Meropenem , Proteínas Bacterianas , Imipenem/farmacología , Infecciones por Enterobacteriaceae/diagnóstico , Infecciones por Enterobacteriaceae/epidemiología , Infecciones por Enterobacteriaceae/microbiología , Pruebas de Sensibilidad Microbiana , Algoritmos , Antibacterianos/farmacología
19.
Antibiotics (Basel) ; 12(10)2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37887194

RESUMEN

BACKGROUND: Despite the availability of new options (ceftazidime-avibactam, imipenem-relebactam, meropenem-vaborbactam and cefiderocol), it is still very difficult to treat infections caused by metallo-ß-lactamase (MBLs)-producers resistant to aztreonam. The in vitro efficacy of aztreonam in association with avibactam, vaborbactam or relebactam was evaluated on a collection of MBL-producing Enterobacterales, MBL-producing P. aeruginosa and highly drug-resistant S. maltophilia. METHODS: A total of fifty-two non-duplicate MBL-producing Enterobacterales, five MBL-producing P. aeruginosa and five multidrug-resistant S. maltophila isolates were used in this study. The minimum inhibitory concentrations (MICs) of aztreonam, meropenem-vaborbactam and imipenem-relebactam were determined by Etest® (bioMérieux, La Balme-les-Grottes) according to EUCAST recommendations. For aztreonam-avibactam, aztreonam-vaborbactam and aztreonam-relebactam associations, the MICs were determined using Etest® on Mueller-Hinton (MH) agar supplemented with 8 mg/L of avibactam, 8 mg/L of vaborbactam and 4 mg/L of relebactam. The MICs were interpreted according to EUCAST guidelines. RESULTS: The susceptibility rates of aztreonam-avibactam, aztreonam-vaborbactam and aztreonam-relebactam with a standard exposure of aztreonam (1g × 3, IV) were 84.6% (44/52), 55.8% and 34.6% for Enterobacterales and 0% for all combinations for P. aeruginosa and S. maltophila. The susceptibility rates of aztreonam-avibactam, aztreonam-vaborbactam and aztreonam-relebactam with a high exposure of aztreonam (2g × 4, IV) were 92.3%, 78.9% and 57.7% for Enterobacterales, 75%, 60% and 60% for P. aeruginosa and 100%, 100% and 40% for S. maltophila. CONCLUSIONS: As previously demonstrated for an aztreonam/ceftazidime-avibactam combination, aztreonam plus imipenem-relebactam and aztreonam plus meropenem-vaborbactam might be useful options, but with potentially lower efficiency, to treat infections caused by aztreonam-non-susceptible MBL-producing Gram-negative strains.

20.
Euro Surveill ; 28(42)2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37855905

RESUMEN

BackgroundSince 2021, an emergence of New Delhi metallo-ß-lactamase (NDM)-14-producing Klebsiella pneumoniae has been identified in France. This variant with increased carbapenemase activity was not previously detected in Enterobacterales.AimWe investigated the rapid dissemination of NDM-14 producers among patients in hospitals in France.MethodsAll NDM-14-producing non-duplicate clinical isolates identified in France until June 2022 (n = 37) were analysed by whole genome sequencing. The phylogeny of NDM-14-producers among all K. pneumoniae sequence type (ST) 147 reported in France since 2014 (n = 431) was performed. Antimicrobial susceptibility testing, conjugation experiments, clonal relationship and molecular clock analysis were performed.ResultsThe 37 NDM-14 producers recovered in France until 2022 belonged to K. pneumoniae ST147. The dissemination of NDM-14-producing K. pneumoniae was linked to a single clone, likely imported from Morocco and responsible for several outbreaks in France. The gene bla NDM-14 was harboured on a 54 kilobase non-conjugative IncFIB plasmid that shared high homology with a known bla NDM-1-carrying plasmid. Using Bayesian analysis, we estimated that the NDM-14-producing K. pneumoniae ST147 clone appeared in 2020. The evolutionary rate of this clone was estimated to 5.61 single nucleotide polymorphisms per genome per year. The NDM-14 producers were highly resistant to all antimicrobials tested except to colistin, cefiderocol (minimum inhibitory concentration 2 mg/L) and the combination of aztreonam/avibactam.ConclusionHighly resistant NDM-14 producing K. pneumoniae can rapidly spread in healthcare settings. Surveillance and thorough investigations of hospital outbreaks are critical to evaluate and limit the dissemination of this clone.


Asunto(s)
Infecciones por Klebsiella , Klebsiella pneumoniae , Humanos , Klebsiella pneumoniae/genética , Antibacterianos/farmacología , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/epidemiología , Teorema de Bayes , Tipificación de Secuencias Multilocus , Farmacorresistencia Bacteriana Múltiple/genética , beta-Lactamasas/genética , Plásmidos/genética , Pruebas de Sensibilidad Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...