Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 31(35): 47598-47610, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38997599

RESUMEN

Sodium chloride (NaCl) can cause oxidative stress in plants, which represents a potential obstacle to the development of monocultures worldwide. Onion (Allium cepa L.) is a famous vegetable consumed and used in world cuisine. In the present study, we analyzed the influence of soil physicochemical profile and the remedial capacity of linalool on seed emergence, roots, and leaf growth in onions subjected to salt stress, as well as its in vivo and in vitro antioxidant potential, Fe2+chelating activity, and reducing power of Fe3+. The outcome of the soil analysis established the following order of abundance: sulfur (S) > calcium (Ca) > potassium (K) > magnesium (Mg) > sodium (Na). NaCl (150 mM) significantly reduced the emergence speed index (ESI), leaf and root length, while increasing the peroxidation content. The length of leaves and roots significantly increased after treatment with linalool (300 and 500 µg/mL). Our data showed negative correlations between seed emergence and K+ concentration, which was reversed after treatments. Linalool (500 µg/mL) significantly reduced oxidative stress, but increased Fe2+ concentration and did not show potential to reduce Fe3+. The in vivo antioxidant effect of linalool is thought to primarily result from an enzymatic activation process. This mechanism underscores its potential as a therapeutic agent for oxidative stress-related conditions. Further investigation into this process could unveil new avenues for antioxidant therapy.


Asunto(s)
Monoterpenos Acíclicos , Antioxidantes , Cebollas , Cebollas/efectos de los fármacos , Monoterpenos Acíclicos/farmacología , Estrés Salino/efectos de los fármacos , Monoterpenos/farmacología , Estrés Oxidativo/efectos de los fármacos
2.
Artículo en Inglés | MEDLINE | ID: mdl-38261226

RESUMEN

Abiotic stresses including sodium chloride (NaCl) are known to negatively affect plant physiology and seed germination by inducing a delay in establishing seedling emergence. The monoterpene carvacrol is the major component of several aromatic plants and seems to interfere with germination and seedling growth. In this study, we investigated whether treatment with carvacrol attenuates the effects of NaCl on the germination and development of Allium cepa, where biochemical parameters were also analyzed. The results showed that the Emergency Speed Index (ESI) was near to 2.0 in the control group. The groups NaCl, carvacrol alone, and in co-treatment with NaCl exhibited an ESI below 0.8, being significantly smaller when compared to the control. NaCl + carvacrol significantly inhibited seed emergence in relation to the NaCl group. Only the content of malondialdehyde was significantly altered by NaCl.

3.
Artículo en Inglés | MEDLINE | ID: mdl-34182094

RESUMEN

Mercury chloride (HgCl2) acts as a bioaccumulator capable of causing numerous neurological and physiological changes in organisms in a negative way. However, rutin has been considered a very effective antioxidant compound in the treatment of neurodegenerative diseases, as it can neutralize radicals capable of damaging neuronal cells. In this context, this study aimed to evaluate rutin as a neoprotective agent against the damage induced by HgCl2 in Drosophila melanogaster. The exposure of the flies to the agents was carried out in triplicate, and about 150 adult flies were evaluated. To assess the antioxidant action of rutin, MTT, phenanthroline, nitric oxide, total thiols and NPSH tests were carried out in the following concentrations: Control (1500 µL of distilled water), 1 mg/g of HgCl2, 0.5 mg/g of Rutin + HgCl2, 1 mg/g of Rutin + HgCl2, 2 mg/g of Rutin + HgCl2. The locomotion test was verified by negative geotaxis, the result of which showed that flies exposed to HgCl2 had difficulties in flight. The group treated with HgCl2 alone had a high mortality rate, while in combination with different concentrations of rutin, it heard a moderate reduction in the number of deaths, as well as in the negative geotaxis data in which the rutin had a positive effect. An increase in iron (II) levels was observed at the highest concentrations of rutin, while at low concentrations, rutin significantly decreased nitric oxide levels. The HgCl2 + R group (2 mg/g) showed a significant increase in the total thiols content, while for the NPSH all rutin concentrations showed a significant increase in the levels of non-protein thiols. Our results demonstrate that mercury chloride can cause oxidative stress in D. melanogaster. However, the results suggest that rutin has antioxidant and protective effects against the damage caused by HgCl2.


Asunto(s)
Drosophila melanogaster/efectos de los fármacos , Cloruro de Mercurio/toxicidad , Fármacos Neuroprotectores/farmacología , Rutina/farmacología , Animales , Antioxidantes/farmacología , Drosophila melanogaster/fisiología , Hierro/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mortalidad , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Óxido Nítrico/metabolismo , Compuestos de Sulfhidrilo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...