Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
SLAS Discov ; 24(3): 346-361, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30784368

RESUMEN

According to the World Health Organization, more than 1 billion people are at risk of or are affected by neglected tropical diseases. Examples of such diseases include trypanosomiasis, which causes sleeping sickness; leishmaniasis; and Chagas disease, all of which are prevalent in Africa, South America, and India. Our aim within the New Medicines for Trypanosomatidic Infections project was to use (1) synthetic and natural product libraries, (2) screening, and (3) a preclinical absorption, distribution, metabolism, and excretion-toxicity (ADME-Tox) profiling platform to identify compounds that can enter the trypanosomatidic drug discovery value chain. The synthetic compound libraries originated from multiple scaffolds with known antiparasitic activity and natural products from the Hypha Discovery MycoDiverse natural products library. Our focus was first to employ target-based screening to identify inhibitors of the protozoan Trypanosoma brucei pteridine reductase 1 ( TbPTR1) and second to use a Trypanosoma brucei phenotypic assay that made use of the T. brucei brucei parasite to identify compounds that inhibited cell growth and caused death. Some of the compounds underwent structure-activity relationship expansion and, when appropriate, were evaluated in a preclinical ADME-Tox assay panel. This preclinical platform has led to the identification of lead-like compounds as well as validated hits in the trypanosomatidic drug discovery value chain.


Asunto(s)
Descubrimiento de Drogas/métodos , Tripanocidas/análisis , Tripanocidas/farmacología , Tripanosomiasis/tratamiento farmacológico , Productos Biológicos/química , Humanos , Relación Estructura-Actividad , Tripanocidas/uso terapéutico
2.
J Eukaryot Microbiol ; 63(6): 794-803, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27194398

RESUMEN

In the last two decades, RNA interference pathways have been employed as a useful tool for reverse genetics in trypanosomatids. Angomonas deanei is a nonpathogenic trypanosomatid that maintains an obligatory endosymbiosis with a bacterium related to the Alcaligenaceae family. Studies of this symbiosis can help us to understand the origin of eukaryotic organelles. The recent elucidation of both the A. deanei and the bacterium symbiont genomes revealed that the host protozoan codes for the enzymes necessary for RNAi activity in trypanosomatids. Here, we tested the functionality of the RNAi machinery by transfecting cells with dsRNA to a reporter gene (green fluorescent protein), which had been previously expressed in the parasite and to α-tubulin, an endogenous gene. In both cases, protein expression was reduced by the presence of specific dsRNA, inducing, respectively, a decreased GFP fluorescence and the formation of enlarged cells with modified arrangement of subpellicular microtubules. Furthermore, symbiont division was impaired. These results indicate that the RNAi system is active in A. deanei and can be used to further explore gene function in symbiont-containing trypanosomatids and to clarify important aspects of symbiosis and cell evolution.


Asunto(s)
Bacterias/citología , Proteínas Protozoarias/genética , Simbiosis , Trypanosomatina/microbiología , Bacterias/genética , División Celular , Proteínas Protozoarias/metabolismo , Interferencia de ARN , Trypanosomatina/genética , Trypanosomatina/metabolismo , Trypanosomatina/ultraestructura , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
3.
Mol Biochem Parasitol ; 204(1): 1-10, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26602446

RESUMEN

The histone H4 from Trypanosomatids diverged from other eukaryotes in the N-terminus, a region that undergoes post-translation modifications involved in the control of gene expression, DNA replication, and chromatin assembly. Nonetheless, the N-terminus of Trypanosoma cruzi histone H4 is mainly acetylated at lysine 4. The lysines 10 and 14 are also acetylated, although at less extent, increasing during the S-phase or after DNA damage, which suggests a regulatory function. Here, we investigated the roles of these acetylations by expressing non-acetylated forms of histone H4 in T. cruzi. We found that histone H4 containing arginines at positions 10 or 14, to prevent acetylation were transported to the nucleus and inserted into the chromatin. However, their presence, even at low levels, interfered with DNA replication and transcription, causing a significant growth arrest of the cells. The absence of acetylation also increased the amount of soluble endogenous histones H3 and H4 and affected the interaction with Asf1, a histone chaperone. Therefore, acetylation of lysines 10 and 14 of the histone H4 in trypanosomes could be required for chromatin assembly and/or remodeling required for transcription and replication.


Asunto(s)
Replicación del ADN , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Proteínas Protozoarias/metabolismo , Transcripción Genética , Trypanosoma cruzi/genética , Acetilación , Transporte Activo de Núcleo Celular , Núcleo Celular/metabolismo , Ensamble y Desensamble de Cromatina , Regulación de la Expresión Génica , Histona Acetiltransferasas/metabolismo , Lisina/química , Procesamiento Proteico-Postraduccional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA