Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Environ Health Insights ; 18: 11786302231225313, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38317694

RESUMEN

Background: Prenatal exposure to metals is hypothesized to be associated with child autism. We aim to investigate the joint and individual effects of prenatal exposure to urine metals including lead (Pb), mercury (Hg), manganese (Mn), and selenium (Se) on child Social Responsiveness Scale (SRS) scores. Methods: We used data from 2 cohorts enriched for likelihood of autism spectrum disorder (ASD): Early Autism Risk Longitudinal Investigation (EARLI) and the Markers of Autism Risk in Babies-Learning Early Signs (MARBLES) studies. Metal concentrations were measured in urine collected during pregnancy. We used Bayesian Kernel Machine Regression and linear regression models to investigate both joint and independent associations of metals with SRS Z-scores in each cohort. We adjusted for maternal age at delivery, interpregnancy interval, maternal education, child race/ethnicity, child sex, and/or study site. Results: The final analytic sample consisted of 251 mother-child pairs. When Pb, Hg, Se, and Mn were at their 75th percentiles, there was a 0.03 increase (95% credible interval [CI]: -0.11, 0.17) in EARLI and 0.07 decrease (95% CI: -0.29, 0.15) in MARBLES in childhood SRS Z-scores, compared to when all 4 metals were at their 50th percentiles. In both cohorts, increasing concentrations of Pb were associated with increasing values of SRS Z-scores, fixing the other metals to their 50th percentiles. However, all the 95% credible intervals contained the null. Conclusions: There were no clear monotonic associations between the overall prenatal metal mixture in pregnancy and childhood SRS Z-scores at 36 months. There were also no clear associations between individual metals within this mixture and childhood SRS Z-scores at 36 months. The overall effects of the metal mixture and the individual effects of each metal within this mixture on offspring SRS Z-scores might be heterogeneous across child sex and cohort. Further studies with larger sample sizes are warranted.

2.
Placenta ; 145: 117-125, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38128222

RESUMEN

INTRODUCTION: Hematopoietic stem cells are cells that differentiate into blood cell types. Although the placenta secretes hormones, proteins and other factors important for maternal/fetal health, cross-talk between placental and hematopoietic stem cells is poorly understood. Moreover, toxicant impacts on placental-hematopoietic stem cell communication is understudied. The goals of this study were to determine if factors secreted from placental cells alter transcriptomic responses in hematopoietic stem cells and if monoethylhexyl phthalate (MEHP), the bioactive metabolite of the pollutant diethylhexyl phthalate, modifies these effects. METHODS: We used K-562 and BeWo cells as in vitro models of hematopoietic stem cells and placental syncytiotrophoblasts, respectively. We treated K-562 cells with medium conditioned by incubation with BeWo cells, medium conditioned with BeWo cells treated with 10 µM MEHP for 24 h, or controls treated with unconditioned medium. We extracted K-562 cell RNA, performed RNA sequencing, then conducted differential gene expression and pathway analysis. RESULTS: Relative to controls, K-562 cells treated with BeWo cell conditioned medium differentially expressed 173 genes (FDR<0.05 and fold-change>2.0), including 2.4-fold upregulatation of tropomyosin 4 (TPM4, a cytoskeletal regulator involved in processes such as cell morphology and migration) and 3.3-fold upregulatation of sphingosine-1-phosphate receptor 3 (S1PR3, a mediator of myeloid cell differentiation and inflammatory responses). Upregulated genes were enriched for pathways including stem cell maintenance, cell proliferation and immune processes. Downregulated genes were enriched for terms involved in protein translation and transcriptional regulation. MEHP treatment differentially expressed eight genes (FDR<0.05), including genes involved in lipid metabolism (e.g., Perilipin 2, fold-change: 1.4; Carnitine Palmitoyltransferase 1A, fold-change: 1.4). DISCUSSION: K-562 cells, a model of hematopoietic stem cells, are responsive to media conditioned by placental cells, potentially impacting pathways like stem cell maintenance.


Asunto(s)
Dietilhexil Ftalato/análogos & derivados , Ácidos Ftálicos , Placenta , Transcriptoma , Embarazo , Femenino , Humanos , Placenta/metabolismo , Medios de Cultivo Condicionados/farmacología , Medios de Cultivo Condicionados/metabolismo , Células Madre Hematopoyéticas
3.
medRxiv ; 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38045240

RESUMEN

Background: Autism spectrum disorder (ASD) is a prevalent and heterogeneous neurodevelopmental disorder. Risk is attributed to genetic and prenatal environmental factors, though the environmental agents are incompletely characterized. Methods: In Early Autism Risk Longitudinal Investigation (EARLI) and Markers of Autism Risk in Babies Learning Early Signs (MARBLES), two pregnancy cohorts of siblings of children with ASD, maternal urinary metals concentrations at two time points during pregnancy were measured using inductively coupled plasma mass spectrometry. At age three, clinicians assessed ASD with DSM-5 criteria. Using multivariable log binomial regression, we examined each metal for association with ASD status, adjusting for gestational age at urine sampling, child sex, maternal age, and maternal education, and meta-analyzed across the two cohorts. Results: In EARLI (n=170) 17.6% of children were diagnosed with ASD, and an additional 43.5% were classified as having other non-neurotypical development (Non-TD). In MARBLES (n=156), 22.7% were diagnosed with ASD, while an additional 11.5% had Non-TD. In earlier pregnancy metals measures, having cadmium concentration over the level of detection was associated with 1.78 (1.19, 2.67) times higher risk of ASD, and 1.43 (1.06, 1.92) times higher risk of Non-TD. A doubling of early pregnancy cesium concentration was marginally associated with 1.81 (0.95, 3.42) times higher risk of ASD, and 1.58 (0.95, 2.63) times higher risk of Non-TD. Conclusion: Exposure in utero to elevated levels of cadmium and cesium, as measured in maternal urine collected during pregnancy, was associated with increased risk of developing ASD.

4.
Clin Epigenetics ; 15(1): 148, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37697338

RESUMEN

BACKGROUND: Seasonal variations in environmental exposures at birth or during gestation are associated with numerous adult traits and health outcomes later in life. Whether DNA methylation (DNAm) plays a role in the molecular mechanisms underlying the associations between birth season and lifelong phenotypes remains unclear. METHODS: We carried out epigenome-wide meta-analyses within the Pregnancy And Childhood Epigenetic Consortium to identify associations of DNAm with birth season, both at differentially methylated probes (DMPs) and regions (DMRs). Associations were examined at two time points: at birth (21 cohorts, N = 9358) and in children aged 1-11 years (12 cohorts, N = 3610). We conducted meta-analyses to assess the impact of latitude on birth season-specific associations at both time points. RESULTS: We identified associations between birth season and DNAm (False Discovery Rate-adjusted p values < 0.05) at two CpGs at birth (winter-born) and four in the childhood (summer-born) analyses when compared to children born in autumn. Furthermore, we identified twenty-six differentially methylated regions (DMR) at birth (winter-born: 8, spring-born: 15, summer-born: 3) and thirty-two in childhood (winter-born: 12, spring and summer: 10 each) meta-analyses with few overlapping DMRs between the birth seasons or the two time points. The DMRs were associated with genes of known functions in tumorigenesis, psychiatric/neurological disorders, inflammation, or immunity, amongst others. Latitude-stratified meta-analyses [higher (≥ 50°N), lower (< 50°N, northern hemisphere only)] revealed differences in associations between birth season and DNAm by birth latitude. DMR analysis implicated genes with previously reported links to schizophrenia (LAX1), skin disorders (PSORS1C, LTB4R), and airway inflammation including asthma (LTB4R), present only at birth in the higher latitudes (≥ 50°N). CONCLUSIONS: In this large epigenome-wide meta-analysis study, we provide evidence for (i) associations between DNAm and season of birth that are unique for the seasons of the year (temporal effect) and (ii) latitude-dependent variations in the seasonal associations (spatial effect). DNAm could play a role in the molecular mechanisms underlying the effect of birth season on adult health outcomes.


Asunto(s)
Asma , Metilación de ADN , Niño , Preescolar , Humanos , Lactante , Recién Nacido , Carcinogénesis , Inflamación , Estaciones del Año
5.
Epigenetics ; 18(1): 2222244, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37300819

RESUMEN

The prevalence and severity of many diseases differs by sex, potentially due to sex-specific patterns in DNA methylation. Autosomal sex-specific differences in DNA methylation have been observed in cord blood and placental tissue but are not well studied in saliva or in diverse populations. We sought to characterize sex-specific DNA methylation on autosomal chromosomes in saliva samples from children in the Future of Families and Child Wellbeing Study, a multi-ethnic prospective birth cohort containing an oversampling of Black, Hispanic and low-income families. DNA methylation from saliva samples was analysed on 796 children (50.6% male) at both ages 9 and 15 with DNA methylation measured using the Illumina HumanMethylation 450k array. An epigenome-wide association analysis of the age 9 samples identified 8,430 sex-differentiated autosomal DNA methylation sites (P < 2.4 × 10-7), of which 76.2% had higher DNA methylation in female children. The strongest sex-difference was in the cg26921482 probe, in the AMDHD2 gene, with 30.6% higher DNA methylation in female compared to male children (P < 1 × 10-300). Treating the age 15 samples as an internal replication set, we observed highly consistent results between the ages 9 and 15 measurements, indicating stable and replicable sex-differentiation. Further, we directly compared our results to previously published DNA methylation sex differences in both cord blood and saliva and again found strong consistency. Our findings support widespread and robust sex-differential DNA methylation across age, human tissues, and populations. These findings help inform our understanding of potential biological processes contributing to sex differences in human physiology and disease.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Niño , Humanos , Femenino , Masculino , Embarazo , Adolescente , Saliva , Salud Infantil , Estudios Prospectivos , Estudio de Asociación del Genoma Completo/métodos , Placenta , Islas de CpG
6.
bioRxiv ; 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37034658

RESUMEN

Background: Hematopoietic stem cells are cells that differentiate into all blood cell types. Although the placenta secretes hormones, proteins and other factors important for maternal and fetal health, cross-talk between placental cells and hematopoietic stem cells is poorly understood. Moreover, toxicant impacts on placental-hematopoietic stem cell communication is understudied. The goals of this study were to determine if factors secreted from placental cells alter transcriptomic responses in hematopoietic stem cells and if monoethylhexyl phthalate (MEHP), the bioactive metabolite of the pollutant diethylhexyl phthalate, modifies these effects. Methods: We used K-562 and BeWo cells as in vitro models of hematopoietic stem cells and placental syncytiotrophoblasts, respectively. We treated K-562 cells with medium conditioned by incubation with BeWo cells, medium conditioned with BeWo cells treated with 10 µM MEHP for 24 hours, or controls treated with unconditioned medium. We extracted K-562 cell RNA, performed RNA sequencing, then conducted differential gene expression and pathway analysis by treatment group. Results: Relative to controls, K-562 cells treated with BeWo cell conditioned medium differentially expressed 173 genes (FDR<0.05 and fold-change>2.0), including 2.4 fold upregulatation of TPM4 and 3.3 fold upregulatation of S1PR3. Upregulated genes were enriched for pathways including stem cell maintenance, cell proliferation and immune processes. Downregulated genes were enriched for terms involved in protein translation and transcriptional regulation. MEHP treatment differentially expressed eight genes (FDR<0.05), including genes involved in lipid metabolism (PLIN2, fold-change: 1.4; CPT1A, fold-change: 1.4). Conclusion: K-562 cells, a model of hematopoietic stem cells, are responsive to media conditioned by placental cells, potentially impacting pathways like stem cell maintenance and proliferation.

7.
Commun Biol ; 6(1): 264, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36914823

RESUMEN

The placenta mediates adverse pregnancy outcomes, including preeclampsia, which is characterized by gestational hypertension and proteinuria. Placental cell type heterogeneity in preeclampsia is not well-understood and limits mechanistic interpretation of bulk gene expression measures. We generated single-cell RNA-sequencing samples for integration with existing data to create the largest deconvolution reference of 19 fetal and 8 maternal cell types from placental villous tissue (n = 9 biological replicates) at term (n = 40,494 cells). We deconvoluted eight published microarray case-control studies of preeclampsia (n = 173 controls, 157 cases). Preeclampsia was associated with excess extravillous trophoblasts and fewer mesenchymal and Hofbauer cells. Adjustment for cellular composition reduced preeclampsia-associated differentially expressed genes (log2 fold-change cutoff = 0.1, FDR < 0.05) from 1154 to 0, whereas downregulation of mitochondrial biogenesis, aerobic respiration, and ribosome biogenesis were robust to cell type adjustment, suggesting direct changes to these pathways. Cellular composition mediated a substantial proportion of the association between preeclampsia and FLT1 (37.8%, 95% CI [27.5%, 48.8%]), LEP (34.5%, 95% CI [26.0%, 44.9%]), and ENG (34.5%, 95% CI [25.0%, 45.3%]) overexpression. Our findings indicate substantial placental cellular heterogeneity in preeclampsia contributes to previously observed bulk gene expression differences. This deconvolution reference lays the groundwork for cellular heterogeneity-aware investigation into placental dysfunction and adverse birth outcomes.


Asunto(s)
Placenta , Preeclampsia , Embarazo , Femenino , Humanos , Placenta/metabolismo , Preeclampsia/genética , Preeclampsia/metabolismo , Trofoblastos/metabolismo , Análisis por Micromatrices , Expresión Génica
8.
Toxicology ; 483: 153371, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36396003

RESUMEN

Numerous Superfund sites are contaminated with the volatile organic chemical trichloroethylene (TCE). In women, exposure to TCE in pregnancy is associated with reduced birth weight. Our previous study reported that TCE exposure in pregnant rats decreased fetal weight and elevated oxidative stress biomarkers in placentae, suggesting placental injury as a potential mechanism of TCE-induced adverse birth outcomes. In this study, we investigated if co-exposure with the antioxidant N-acetylcysteine (NAC) attenuates TCE exposure effects on RNA expression. Timed-pregnant Wistar rats were exposed orally to 480 mg TCE/kg/day on gestation days 6-16. Exposure of 200 mg NAC/kg/day alone or as a pre/co-exposure with TCE occurred on gestation days 5-16 to stimulate antioxidant genes prior to TCE exposure. Tissue was collected on gestation day 16. In male and female placentae, we evaluated TCE- and/or NAC-induced changes to gene expression and pathway enrichment analyses using false discovery rate (FDR) and fold-change criteria. In female placentae, exposure to TCE caused significant differential expression 129 genes while the TCE+NAC altered 125 genes, compared with controls (FDR< 0.05 + fold-change >1). In contrast, in male placentae TCE exposure differentially expressed 9 genes and TCE+NAC differentially expressed 35 genes, compared with controls (FDR< 0.05 + fold-change >1). NAC alone did not significantly alter gene expression in either sex. Differentially expressed genes observed with TCE exposure were enriched in mitochondrial biogenesis and oxidative phosphorylation pathways in females whereas immune system pathways and endoplasmic reticulum stress pathways were differentially expressed in both sexes (FDR<0.05). TCE treatment was differentially enriched for genes regulated by the transcription factors ATF6 (both sexes) and ATF4 (males only), indicating a cellular condition triggered by misfolded proteins during endoplasmic reticulum stress. This study demonstrates novel genes and pathways involved in TCE-induced placental injury and showed antioxidant co-treatment largely did not attenuate TCE exposure effects.


Asunto(s)
Tricloroetileno , Femenino , Masculino , Ratas , Embarazo , Animales , Tricloroetileno/toxicidad , Tricloroetileno/metabolismo , Acetilcisteína/farmacología , Ratas Wistar , Antioxidantes/farmacología , Placenta/metabolismo
9.
Commun Biol ; 5(1): 1313, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36446949

RESUMEN

Higher maternal pre-pregnancy body mass index (ppBMI) is associated with increased neonatal morbidity, as well as with pregnancy complications and metabolic outcomes in offspring later in life. The placenta is a key organ in fetal development and has been proposed to act as a mediator between the mother and different health outcomes in children. The overall aim of the present work is to investigate the association of ppBMI with epigenome-wide placental DNA methylation (DNAm) in 10 studies from the PACE consortium, amounting to 2631 mother-child pairs. We identify 27 CpG sites at which we observe placental DNAm variations of up to 2.0% per 10 ppBMI-unit. The CpGs that are differentially methylated in placenta do not overlap with CpGs identified in previous studies in cord blood DNAm related to ppBMI. Many of the identified CpGs are located in open sea regions, are often close to obesity-related genes such as GPX1 and LGR4 and altogether, are enriched in cancer and oxidative stress pathways. Our findings suggest that placental DNAm could be one of the mechanisms by which maternal obesity is associated with metabolic health outcomes in newborns and children, although further studies will be needed in order to corroborate these findings.


Asunto(s)
Metilación de ADN , Placenta , Recién Nacido , Embarazo , Niño , Humanos , Femenino , Índice de Masa Corporal , Madres , Salud Infantil
10.
Epigenetics Chromatin ; 15(1): 28, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35918756

RESUMEN

BACKGROUND: Prenatal vitamin use is recommended before and during pregnancies for normal fetal development. Prenatal vitamins do not have a standard formulation, but many contain calcium, folic acid, iodine, iron, omega-3 fatty acids, zinc, and vitamins A, B6, B12, and D, and usually they contain higher concentrations of folic acid and iron than regular multivitamins in the US Nutrient levels can impact epigenetic factors such as DNA methylation, but relationships between maternal prenatal vitamin use and DNA methylation have been relatively understudied. We examined use of prenatal vitamins in the first month of pregnancy in relation to cord blood and placenta DNA methylation in two prospective pregnancy cohorts: the Early Autism Risk Longitudinal Investigation (EARLI) and Markers of Autism Risk Learning Early Signs (MARBLES) studies. RESULTS: In placenta, prenatal vitamin intake was marginally associated with -0.52% (95% CI -1.04, 0.01) lower mean array-wide DNA methylation in EARLI, and associated with -0.60% (-1.08, -0.13) lower mean array-wide DNA methylation in MARBLES. There was little consistency in the associations between prenatal vitamin intake and single DNA methylation site effect estimates across cohorts and tissues, with only a few overlapping sites with correlated effect estimates. However, the single DNA methylation sites with p-value < 0.01 (EARLI cord nCpGs = 4068, EARLI placenta nCpGs = 3647, MARBLES cord nCpGs = 4068, MARBLES placenta nCpGs = 9563) were consistently enriched in neuronal developmental pathways. CONCLUSIONS: Together, our findings suggest that prenatal vitamin intake in the first month of pregnancy may be related to lower placental global DNA methylation and related to DNA methylation in brain-related pathways in both placenta and cord blood.


Asunto(s)
Metilación de ADN , Placenta , Femenino , Sangre Fetal/metabolismo , Ácido Fólico/metabolismo , Humanos , Hierro/metabolismo , Placenta/metabolismo , Embarazo , Estudios Prospectivos , Vitaminas
11.
Mutat Res Rev Mutat Res ; 789: 108415, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35690418

RESUMEN

BACKGROUND: Among children, sex-specific differences in disease prevalence, age of onset, and susceptibility have been observed in health conditions including asthma, immune response, metabolic health, some pediatric and adult cancers, and psychiatric disorders. Epigenetic modifications such as DNA methylation may play a role in the sexual differences observed in diseases and other physiological traits. METHODS: We performed a meta-analysis of the association of sex and cord blood DNA methylation at over 450,000 CpG sites in 8438 newborns from 17 cohorts participating in the Pregnancy And Childhood Epigenetics (PACE) Consortium. We also examined associations of child sex with DNA methylation in older children ages 5.5-10 years from 8 cohorts (n = 4268). RESULTS: In newborn blood, sex was associated at Bonferroni level significance with differences in DNA methylation at 46,979 autosomal CpG sites (p < 1.3 × 10-7) after adjusting for white blood cell proportions and batch. Most of those sites had lower methylation levels in males than in females. Of the differentially methylated CpG sites identified in newborn blood, 68% (31,727) met look-up level significance (p < 1.1 × 10-6) in older children and had methylation differences in the same direction. CONCLUSIONS: This is a large-scale meta-analysis examining sex differences in DNA methylation in newborns and older children. Expanding upon previous studies, we replicated previous findings and identified additional autosomal sites with sex-specific differences in DNA methylation. Differentially methylated sites were enriched in genes involved in cancer, psychiatric disorders, and cardiovascular phenotypes.


Asunto(s)
Metilación de ADN , Epigenoma , Adolescente , Niño , Metilación de ADN/genética , Epigénesis Genética , Epigenómica , Femenino , Humanos , Recién Nacido , Masculino , Embarazo , Caracteres Sexuales
12.
Environ Res ; 204(Pt B): 112093, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34562483

RESUMEN

Mercury (Hg) is a ubiquitous heavy metal that originates from both natural and anthropogenic sources and is transformed in the environment to its most toxicant form, methylmercury (MeHg). Recent studies suggest that MeHg exposure can alter epigenetic modifications during embryogenesis. In this study, we examined associations between prenatal MeHg exposure and levels of cord blood DNA methylation (DNAm) by meta-analysis in up to seven independent studies (n = 1462) as well as persistence of those relationships in blood from 7 to 8 year-old children (n = 794). In cord blood, we found limited evidence of differential DNAm at cg24184221 in MED31 (ß = 2.28 × 10-4, p-value = 5.87 × 10-5) in relation to prenatal MeHg exposure. In child blood, we identified differential DNAm at cg15288800 (ß = 0.004, p-value = 4.97 × 10-5), also located in MED31. This repeated link to MED31, a gene involved in lipid metabolism and RNA Polymerase II transcription function, may suggest a DNAm perturbation related to MeHg exposure that persists into early childhood. Further, we found evidence for association between prenatal MeHg exposure and child blood DNAm levels at two additional CpGs: cg12204245 (ß = 0.002, p-value = 4.81 × 10-7) in GRK1 and cg02212000 (ß = -0.001, p-value = 8.13 × 10-7) in GGH. Prenatal MeHg exposure was associated with DNAm modifications that may influence health outcomes, such as cognitive or anthropometric development, in different populations.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Efectos Tardíos de la Exposición Prenatal , Niño , Preescolar , Metilación de ADN , Femenino , Sangre Fetal , Humanos , Complejo Mediador , Mercurio/toxicidad , Compuestos de Metilmercurio/toxicidad , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/genética , Estudios Prospectivos
13.
J Autism Dev Disord ; 52(6): 2801-2811, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34110557

RESUMEN

We examined maternal prenatal vitamin use or supplemental folic acid intake during month one of pregnancy for association with autism spectrum disorder (ASD) in the Early Autism Risk Longitudinal Investigation, an enriched-risk pregnancy cohort. Total folic acid intake was calculated from monthly prenatal vitamins, multivitamins, and other supplement reports. Clinical assessments through age 3 years classified children as ASD (n = 38) or non-ASD (n = 153). In pregnancy month one, prenatal vitamin use (59.7%) was not significantly associated with odds of ASD (OR = 0.70, 95%CI 0.32, 1.53). Sample size was limited and residual confounding was possible. Given the estimated effect sizes in this and previous work, prenatal vitamin intake during early pregnancy could be a clinically useful preventative measure for ASD.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Trastorno del Espectro Autista/epidemiología , Niño , Preescolar , Femenino , Ácido Fólico , Humanos , Embarazo , Hermanos , Vitaminas
14.
Front Mol Neurosci ; 14: 775390, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34899183

RESUMEN

Background: Pregnancy measures of DNA methylation, an epigenetic mark, may be associated with autism spectrum disorder (ASD) development in children. Few ASD studies have considered prospective designs with DNA methylation measured in multiple tissues and tested overlap with ASD genetic risk loci. Objectives: To estimate associations between DNA methylation in maternal blood, cord blood, and placenta and later diagnosis of ASD, and to evaluate enrichment of ASD-associated DNA methylation for known ASD-associated genes. Methods: In the Early Autism Risk Longitudinal Investigation (EARLI), an ASD-enriched risk birth cohort, genome-scale maternal blood (early n = 140 and late n = 75 pregnancy), infant cord blood (n = 133), and placenta (maternal n = 106 and fetal n = 107 compartments) DNA methylation was assessed on the Illumina 450k HumanMethylation array and compared to ASD diagnosis at 36 months of age. Differences in site-specific and global methylation were tested with ASD, as well as enrichment of single site associations for ASD risk genes (n = 881) from the Simons Foundation Autism Research Initiative (SFARI) database. Results: No individual DNA methylation site was associated with ASD at genome-wide significance, however, individual DNA methylation sites nominally associated with ASD (P < 0.05) in each tissue were highly enriched for SFARI genes (cord blood P = 7.9 × 10-29, maternal blood early pregnancy P = 6.1 × 10-27, maternal blood late pregnancy P = 2.8 × 10-16, maternal placenta P = 5.6 × 10-15, fetal placenta P = 1.3 × 10-20). DNA methylation sites nominally associated with ASD across all five tissues overlapped at 144 (29.5%) SFARI genes. Conclusion: DNA methylation sites nominally associated with later ASD diagnosis in multiple tissues were enriched for ASD risk genes. Our multi-tissue study demonstrates the utility of examining DNA methylation prior to ASD diagnosis.

15.
Toxics ; 9(10)2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34678958

RESUMEN

Exposure in utero to particulate matter (PM2.5 and PM10) is associated with maladaptive health outcomes. Although exposure to prenatal PM2.5 and PM10 has cord blood DNA methylation signatures at birth, signature persistence into childhood and saliva cross-tissue applicability has not been tested. In the Fragile Families and Child Wellbeing Study, a United States 20-city birth cohort, average residential PM2.5 and PM10 during the three months prior to birth was estimated using air quality monitors with inverse distance weighting. Saliva DNA methylation at ages 9 (n = 749) and 15 (n = 793) was measured using the Illumina HumanMethylation 450 k BeadArray. Cumulative DNA methylation scores for particulate matter were estimated by weighting participant DNA methylation at each site by independent meta-analysis effect estimates and standardizing the sums. Using a mixed-effects regression analysis, we tested the associations between cumulative DNA methylation scores at ages 9 and 15 and PM exposure during pregnancy, adjusted for child sex, age, race/ethnicity, maternal income-to-needs ratio, nonmartial birth status, and saliva cell-type proportions. Our study sample was 50.5% male, 56.3% non-Hispanic Black, and 19.8% Hispanic, with a median income-to-needs ratio of 1.4. Mean exposure levels for PM2.5 were 27.9 µg/m3/day (standard deviation: 7.0; 23.7% of observations exceeded safety standards) and for PM10 were 15.0 µg/m3/day (standard deviation: 3.1). An interquartile range increase in PM2.5 exposure (10.73 µg/m3/day) was associated with a -0.0287 standard deviation lower cumulative DNA methylation score for PM2.5 (95% CI: -0.0732, 0.0158, p = 0.20) across all participants. An interquartile range increase in PM10 exposure (3.20 µg/m3/day) was associated with a -0.1472 standard deviation lower cumulative DNA methylation score for PM10 (95% CI: -0.3038, 0.0095, p = 0.06) across all participants. The PM10 findings were driven by the age 15 subset where an interquartile range increase in PM10 exposure was associated with a -0.024 standard deviation lower cumulative DNA methylation score for PM10 (95% CI: -0.043, -0.005, p = 0.012). Findings were robust to adjustment for PM exposure at ages 1 and 3. In utero PM10-associated DNA methylation differences were identified at age 15 in saliva. Benchmarking the timing and cell-type generalizability is critical for epigenetic exposure biomarker assessment.

16.
Artículo en Inglés | MEDLINE | ID: mdl-33317014

RESUMEN

BACKGROUND: Fetal development involves cellular differentiation and epigenetic changes-complex processes that are sensitive to environmental factors. Maternal nutrient levels during pregnancy affect development, and methylene tetrahydrofolate reductase (MTHFR) is important for processing the nutrient folate. HYPOTHESIS: We hypothesize that supplement intake before pregnancy and maternal genotype are associated with DNA methylation in newborns. METHODS: In the pregnancy cohort, Early Autism Risk Longitudinal Investigation (EARLI), health history, and genotype information was obtained (n = 249 families). Cord blood DNA methylation (n = 130) was measured using the Illumina HumanMethylation450k array and global DNA methylation levels were computed over 455,698 sites. Supplement use preconception and during pregnancy were surveyed at visits during pregnancy. We evaluated associations between maternal preconception supplement intake and global DNA methylation or DNA methylation density distributions of newborn cord blood, stratified by the presence of a variant maternal MTHFR C677T allele. RESULTS: Maternal preconceptional multivitamin intake was associated with cord blood methylation, dependent on maternal MTHFR genotype (interaction term p = 0.013). For mothers without the MTHFR variant allele, multivitamin intake was associated with 0.96% (95% CI: 0.09, 1.83) higher global cord blood methylation (p = 0.04) and was also associated with the cumulative density distribution of methylation (p = 0.03). For mothers with at least one variant allele, multivitamin intake had a null -0.06% (95% CI: -0.45, 0.33) association with global cord blood DNA methylation, and was not associated with the cumulative density distribution (p = 0.37). CONCLUSIONS: We observed that cord blood DNA methylation was associated with maternal supplement exposure preconception and maternal genotype. Genetic context should be considered when assessing DNA methylation effects of modifiable risk factors around the time of pregnancy.


Asunto(s)
Metilación de ADN , Metilenotetrahidrofolato Reductasa (NADPH2) , Niño , Metilación de ADN/genética , Femenino , Sangre Fetal , Genotipo , Humanos , Recién Nacido , Masculino , Metilenotetrahidrofolato Reductasa (NADPH2)/genética , Embarazo , Vitaminas
17.
Chemosphere ; 255: 127000, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32417515

RESUMEN

BACKGROUND: Bisphenol-A (BPA) exposure is widespread and early life exposure is associated with metabolic syndrome. While visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) are implicated in the development of metabolic syndrome, the adipose depot-specific effects of prenatal BPA treatment are poorly understood. OBJECTIVE: To determine the impact of prenatal BPA exposure on genome-wide gene expression of VAT and SAT depots. METHODS: RNA sequencing was performed on SAT and VAT from 21-month old control and prenatal BPA-treated female sheep. Gene expression and pathway differences between SAT and VAT depots with or without prenatal BPA-treatment and the effect of prenatal BPA treatment on each depot were tested. RESULTS: There were 179 differentially expressed genes (padjusted < 0.05, log2-fold change >2.5) between SAT and VAT. Development and immune response pathways were upregulated in SAT, while metabolic pathways were upregulated in VAT. These adipose depot-specific genes and pathways were consistent with prenatal BPA-treatment. In SAT, BPA-treatment resulted in differential expression of 108 genes (78% upregulated with BPA) and altered pathways (immune response downregulated, RNA processing upregulated). In contrast in VAT, BPA-treatment differentially expressed 4 genes and upregulated chromatin and RNA processing pathways. CONCLUSION: Prenatal BPA-treatment induces adult depot-specific alterations in RNA expression in inflammation, RNA processing, and chromatin pathways, reflecting the diverse roles of SAT and VAT in regulating lipid storage and insulin sensitivity. These adipose tissue transcriptional dysregulations may contribute to the metabolic disorders observed in prenatal BPA-treated female sheep.


Asunto(s)
Adiposidad/efectos de los fármacos , Compuestos de Bencidrilo/toxicidad , Disruptores Endocrinos/toxicidad , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Grasa Intraabdominal/efectos de los fármacos , Fenoles/toxicidad , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Grasa Subcutánea/efectos de los fármacos , Adiposidad/genética , Animales , Compuestos de Bencidrilo/sangre , Regulación hacia Abajo , Disruptores Endocrinos/sangre , Femenino , Perfilación de la Expresión Génica , Inflamación , Grasa Intraabdominal/crecimiento & desarrollo , Grasa Intraabdominal/metabolismo , Masculino , Síndrome Metabólico/genética , Síndrome Metabólico/metabolismo , Obesidad/metabolismo , Fenoles/sangre , Embarazo , Efectos Tardíos de la Exposición Prenatal/genética , ARN/genética , ARN/metabolismo , Ovinos , Grasa Subcutánea/crecimiento & desarrollo , Grasa Subcutánea/metabolismo
18.
Toxicol Sci ; 176(2): 396-409, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32458983

RESUMEN

Lead (Pb) exposure is ubiquitous with permanent neurodevelopmental effects. The hippocampus brain region is involved in learning and memory with heterogeneous cellular composition. The hippocampus cell type-specific responses to Pb are unknown. The objective of this study is to examine perinatal Pb treatment effects on adult hippocampus gene expression, at the level of individual cells. In mice perinatally exposed to control water or a human physiologically relevant level (32 ppm in maternal drinking water) of Pb, 2 weeks prior to mating through weaning, we tested for hippocampus gene expression and cellular differences at 5 months of age. We sequenced RNA from 5258 hippocampal cells to (1) test for treatment gene expression differences averaged across all cells, (2) compare cell cluster composition by treatment, and (3) test for treatment gene expression and pathway differences within cell clusters. Gene expression patterns revealed 12 hippocampus cell clusters, mapping to major expected cell types (eg, microglia, astrocytes, neurons, and oligodendrocytes). Perinatal Pb treatment was associated with 12.4% more oligodendrocytes (p = 4.4 × 10-21) in adult mice. Across all cells, Pb treatment was associated with expression of cell cluster marker genes. Within cell clusters, Pb treatment (q < 0.05) caused differential gene expression in endothelial, microglial, pericyte, and astrocyte cells. Pb treatment upregulated protein folding pathways in microglia (p = 3.4 × 10-9) and stress response in oligodendrocytes (p = 3.2 × 10-5). Bulk tissue analysis may be influenced by changes in cell type composition, obscuring effects within vulnerable cell types. This study serves as a biological reference for future single-cell toxicant studies, to ultimately characterize molecular effects on cognition and behavior.


Asunto(s)
Expresión Génica , Hipocampo/efectos de los fármacos , Plomo , Exposición Materna/efectos adversos , Análisis de la Célula Individual , Animales , Femenino , Expresión Génica/efectos de los fármacos , Hipocampo/metabolismo , Plomo/toxicidad , Ratones , Neuronas
19.
Genes (Basel) ; 10(4)2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30987383

RESUMEN

: Lead (Pb) exposure is associated with a wide range of neurological deficits. Environmental exposures may impact epigenetic changes, such as DNA methylation, and can affect neurodevelopmental outcomes over the life-course. Mating mice were obtained from a genetically invariant C57BL/6J background agouti viable yellow Avy strain. Virgin dams (a/a) were randomly assigned 0 ppm (control), 2.1 ppm (low), or 32 ppm (high) Pb-acetate water two weeks prior to mating with male mice (Avy/a), and this continued through weaning. At age 10 months, cortex neuronal nuclei were separated with NeuN⁺ antibodies in male mice to investigate neuron-specific genome-wide promoter DNA methylation using the Roche NimbleGen Mouse 3x720K CpG Island Promoter Array in nine pooled samples (three per dose). Several probes reached p-value < 10-5 , all of which were hypomethylated: 12 for high Pb (minimum false discovery rate (FDR) = 0.16, largest intensity ratio difference = -2.1) and 7 for low Pb (minimum FDR = 0.56, largest intensity ratio difference = -2.2). Consistent with previous results in bulk tissue, we observed a weak association between early-life exposure to Pb and DNA hypomethylation, with some affected genes related to neurodevelopment or cognitive function. Although these analyses were limited to males, data indicate that non-dividing cells such as neurons can be carriers of long-term epigenetic changes induced in development.


Asunto(s)
Corteza Cerebral/crecimiento & desarrollo , Metilación de ADN , Plomo/efectos adversos , Efectos Tardíos de la Exposición Prenatal/genética , Animales , Corteza Cerebral/química , Corteza Cerebral/citología , Corteza Cerebral/efectos de los fármacos , Cognición/efectos de los fármacos , Modelos Animales de Enfermedad , Epigénesis Genética , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/química , Neuronas/efectos de los fármacos , Embarazo , Regiones Promotoras Genéticas , Distribución Aleatoria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA