Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Heliyon ; 9(8): e18853, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37600383

RESUMEN

Purpose: To report a novel technique to facilitate amniotic membrane transplantation (AMT) for acute stage Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN). Design: Laboratory investigation and retrospective, single-center case series. Methods: The polylactic acid (PLA) amniotic fornical ring (AFR) have been successfully manufactured by three-dimensional (3D) printing technology for AMT. This study retrospectively analyzed the medical records of 5 SJS/TEN patients at the acute stage between 2019 and 2023. Patients were surgically treated with AFR or sutured amniotic membrane transplant (SAMT). Epidemiology, best-corrected visual acuity (BCVA), acute ocular severity score, operative duration, epithelial healing time, amniotic dissolution and follow-up time were evaluated. Results: Of all five patients, three patients (6 eyes) received AFR/AMT (Group A), and 2 patients (4 eyes) received SAMT (Group B). There were no significant differences between two groups in the mean preoperative days and vision changes. The mean operation duration was 11.7 ± 3.8 mins in group A. Compared with the SAMT (48.8 ± 5.3 mins), the operation duration was reduced by 76.02%. The mean times for epithelial healing were 32.5 ± 29.2 days in group A and 12.0 ± 0.0 days in group B. In addition, there were no significant side effects of 3D-printed sterile AFR on the eyes. Conclusions: 3D-printed PLA scaffolds could be used as an AFR device for acute SJS/TEN. In addition, personalized 3D-printed AFR is superior to conventional SAMT in operation duration.

2.
Int J Bioprint ; 9(3): 713, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37273984

RESUMEN

In the present work, we used three-dimensional (3D) printing technology to make a polylactic acid (PLA) amniotic fornical ring (AFR) for ocular surface reconstruction. This work is a retrospective and interventional case series of patients with ocular surface diseases who underwent either personalized 3D-printed AFR-assisted amniotic membrane transplantation (AMT) or sutured AMT (SAMT). Patient epidemiology, treatment, operative duration, epithelial healing time, retention time, vision changes, morbidity, and costs were analyzed. Thirty-one patients (40 eyes) and 19 patients (22 eyes) were enrolled in the 3D-printed AFR group and the SAMT group, respectively. The clinical indications of AFR and SAMT were similar, such as corneal and/or conjunctival epithelial defects due to chemical burns, thermal burns, Stevens-Johnson syndrome (SJS), or toxic epidermal necrolysis (TEN). The mean dissolution time was 15 ± 11 days in the AFR group, compared with 14 ± 7 days in the SAMT group. The percentage of healed corneal area was 90.91% (66.10%-100.00%) for AFR and 93.67% (60.23%-100.00%) for SAMT. The median time for corneal epithelial healing was 14 (7-75) days in the AFR group and 30 (14-55) days in the suture AMT group. There were no significant differences in the initial visual acuity, final visual acuity, or improvement in visual acuity between the two groups. The operation duration in the AFR group was significantly shorter than that in the SAMT group. Regarding the cost analysis, the average cost per eye in the AFR group was significantly lower than that in the SAMT group. Furthermore, 3D-printed and sterile AFR showed no obvious side effects on the eyes. Our results suggested that 3D-printed PLA scaffolds could be used as an AFR device for ocular surface disease. In addition, personalized 3D-printed AFR is superior to conventional AMT in operation duration and cost effectiveness, thereby reducing the financial burden on our health care system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA