Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Exp Bot ; 71(19): 6074-6083, 2020 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-32598444

RESUMEN

Ash dieback, a forest epidemic caused by the invasive fungus Hymenoscyphus fraxineus, threatens ash trees throughout Europe. Within Fraxinus excelsior populations, a small proportion of genotypes show a low susceptibility to the pathogen. We compared the metabolomes from a cohort of low-susceptibility ash genotypes with a cohort of high-susceptibility ash genotypes. This revealed two significantly different chemotypes. A total of 64 candidate metabolites associated with reduced or increased susceptibility in the chemical families secoiridoids, coumarins, flavonoids, phenylethanoids, and lignans. Increased levels of two coumarins, fraxetin and esculetin, were strongly associated with reduced susceptibility to ash dieback. Both coumarins inhibited the growth of H. fraxineus in vitro when supplied at physiological concentrations, thereby validating their role as markers for low susceptibility to ash dieback. Similarly, fungal growth inhibition was observed when the methanolic bark extract of low-susceptibility ash genotypes was supplied. Our findings indicate the presence of constitutive chemical defense barriers against ash dieback in ash.


Asunto(s)
Ascomicetos , Fraxinus , Europa (Continente) , Fraxinus/genética , Enfermedades de las Plantas
2.
Nature ; 541(7636): 212-216, 2017 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-28024298

RESUMEN

Ash trees (genus Fraxinus, family Oleaceae) are widespread throughout the Northern Hemisphere, but are being devastated in Europe by the fungus Hymenoscyphus fraxineus, causing ash dieback, and in North America by the herbivorous beetle Agrilus planipennis. Here we sequence the genome of a low-heterozygosity Fraxinus excelsior tree from Gloucestershire, UK, annotating 38,852 protein-coding genes of which 25% appear ash specific when compared with the genomes of ten other plant species. Analyses of paralogous genes suggest a whole-genome duplication shared with olive (Olea europaea, Oleaceae). We also re-sequence 37 F. excelsior trees from Europe, finding evidence for apparent long-term decline in effective population size. Using our reference sequence, we re-analyse association transcriptomic data, yielding improved markers for reduced susceptibility to ash dieback. Surveys of these markers in British populations suggest that reduced susceptibility to ash dieback may be more widespread in Great Britain than in Denmark. We also present evidence that susceptibility of trees to H. fraxineus is associated with their iridoid glycoside levels. This rapid, integrated, multidisciplinary research response to an emerging health threat in a non-model organism opens the way for mitigation of the epidemic.


Asunto(s)
Fraxinus/genética , Predisposición Genética a la Enfermedad/genética , Variación Genética , Genoma de Planta/genética , Enfermedades de las Plantas/genética , Árboles/genética , Ascomicetos/patogenicidad , Secuencia Conservada/genética , Dinamarca , Fraxinus/microbiología , Genes de Plantas/genética , Genómica , Glicósidos Iridoides/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Proteínas de Plantas/genética , Densidad de Población , Análisis de Secuencia de ADN , Especificidad de la Especie , Transcriptoma , Árboles/microbiología , Reino Unido
3.
BMC Plant Biol ; 14: 202, 2014 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-25928320

RESUMEN

BACKGROUND: Salix caprea is a cold-tolerant pioneer species that is ecologically important in Europe and western and central Asia. However, little data is available on its population genetic structure and molecular ecology. We describe the levels of geographic population genetic structure in natural Irish populations of S. caprea and determine the extent of gene flow and sexual reproduction using both chloroplast and nuclear simple sequence repeats (SSRs). RESULTS: A total of 183 individuals from 21 semi-natural woodlands were collected and genotyped. Gene diversity across populations was high for the chloroplast SSRs (H T = 0.21-0.58) and 79 different haplotypes were discovered, among them 48% were unique to a single individual. Genetic differentiation of populations was found to be between moderate and high (mean G ST = 0.38). For the nuclear SSRs, G ST was low at 0.07 and observed heterozygosity across populations was high (H O = 0.32-0.51); only 9.8% of the genotypes discovered were present in two or more individuals. For both types of markers, AMOVA showed that most of the variation was within populations. Minor geographic pattern was confirmed by a Bayesian clustering analysis. Gene flow via pollen was found to be approximately 7 times more important than via seeds. CONCLUSIONS: The data are consistent with outbreeding and indicate that there are no significant barriers for gene flow within Ireland over large geographic distances. Both pollen-mediated and seed-mediated gene flow were found to be high, with some of the populations being more than 200 km apart from each other. These findings could simply be due to human intervention through seed trade or accidental transportation of both seeds and pollen. These results are of value to breeders wishing to exploit natural genetic variation and foresters having to choose planting material.


Asunto(s)
ADN de Cloroplastos/química , Flujo Génico , Variación Genética , Salix/genética , Teorema de Bayes , Genotipo , Haplotipos , Repeticiones de Microsatélite , Filogeografía
4.
Biotechnol Biofuels ; 6(1): 114, 2013 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-23924375

RESUMEN

BACKGROUND: Little is known about the levels of variation in lignin or other wood related genes in Salix, a genus that is being increasingly used for biomass and biofuel production. The lignin biosynthesis pathway is well characterized in a number of species, including the model tree Populus. We aimed to transfer the genomic resources already available in Populus to its sister genus Salix to assess levels of variation within genes involved in wood formation. RESULTS: Amplification trials for 27 gene regions were undertaken in 40 Salix taxa. Twelve of these regions were sequenced. Alignment searches of the resulting sequences against reference databases, combined with phylogenetic analyses, showed the close similarity of these Salix sequences to Populus, confirming homology of the primer regions and indicating a high level of conservation within the wood formation genes. However, all sequences were found to vary considerably among Salix species, mainly as SNPs with a smaller number of insertions-deletions. Between 25 and 176 SNPs per kbp per gene region (in predicted exons) were discovered within Salix. CONCLUSIONS: The variation found is sizeable but not unexpected as it is based on interspecific and not intraspecific comparison; it is comparable to interspecific variation in Populus. The characterisation of genetic variation is a key process in pre-breeding and for the conservation and exploitation of genetic resources in Salix. This study characterises the variation in several lignocellulose gene markers for such purposes.

5.
Ann Bot ; 96(7): 1237-46, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16199484

RESUMEN

BACKGROUND AND AIMS: Populations of oak (Quercus petraea and Q. robur) were investigated using morphological and molecular (AFLP) analyses to assess species distinction. The study aimed to describe species distinction in Irish oak populations and to situate this in a European context. METHODS: Populations were sampled from across the range of the island of Ireland. Leaf morphological characters were analysed through clustering and ordination methods. Putative neutral molecular markers (AFLPs) were used to analyse the molecular variation. Cluster and ordination analyses were also performed on the AFLP markers in addition to calculations of genetic diversity and F-statisitcs. KEY RESULTS: A notable divergence was uncovered between the morphological and molecular analyses. The morphological analysis clearly differentiated individuals into their respective species, whereas the molecular analysis did not. Twenty species-specific AFLP markers were observed from 123 plants in 24 populations but none of these was species-diagnostic. Principal Coordinate Analysis of the AFLP data revealed a clustering, across the first two axes, of individuals according to population rather than according to species. High F(ST) values calculated from AFLP markers also indicated population differentiation (F(ST) = 0.271). Species differentiation accounted for only 13 % of the variation in diversity compared with population differentiation, which accounted for 27 %. CONCLUSIONS: The results show that neutral molecular variation is partitioned more strongly between populations than between species. Although this could indicate that the populations of Q. petraea and Q. robur studied may not be distinct species at a molecular level, it is proposed that the difficulty in distinguishing the species in Irish oak populations using AFLP markers is due to population differentiation masking species differences. This could result from non-random mating in small, fragmented woodland populations. Hybridization and introgression between the species could also have a significant role.


Asunto(s)
Quercus/clasificación , Análisis por Conglomerados , Variación Genética , Irlanda , Técnicas de Amplificación de Ácido Nucleico , Filogenia , Hojas de la Planta/anatomía & histología , Polimorfismo de Longitud del Fragmento de Restricción , Análisis de Componente Principal , Quercus/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...