Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nature ; 620(7972): 154-162, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37495689

RESUMEN

Fasting initiates a multitude of adaptations to allow survival. Activation of the hypothalamic-pituitary-adrenal (HPA) axis and subsequent release of glucocorticoid hormones is a key response that mobilizes fuel stores to meet energy demands1-5. Despite the importance of the HPA axis response, the neural mechanisms that drive its activation during energy deficit are unknown. Here, we show that fasting-activated hypothalamic agouti-related peptide (AgRP)-expressing neurons trigger and are essential for fasting-induced HPA axis activation. AgRP neurons do so through projections to the paraventricular hypothalamus (PVH), where, in a mechanism not previously described for AgRP neurons, they presynaptically inhibit the terminals of tonically active GABAergic afferents from the bed nucleus of the stria terminalis (BNST) that otherwise restrain activity of corticotrophin-releasing hormone (CRH)-expressing neurons. This disinhibition of PVHCrh neurons requires γ-aminobutyric acid (GABA)/GABA-B receptor signalling and potently activates the HPA axis. Notably, stimulation of the HPA axis by AgRP neurons is independent of their induction of hunger, showing that these canonical 'hunger neurons' drive many distinctly different adaptations to the fasted state. Together, our findings identify the neural basis for fasting-induced HPA axis activation and uncover a unique means by which AgRP neurons activate downstream neurons: through presynaptic inhibition of GABAergic afferents. Given the potency of this disinhibition of tonically active BNST afferents, other activators of the HPA axis, such as psychological stress, may also work by reducing BNST inhibitory tone onto PVHCrh neurons.


Asunto(s)
Ayuno , Sistema Hipotálamo-Hipofisario , Neuronas , Sistema Hipófiso-Suprarrenal , Proteína Relacionada con Agouti/metabolismo , Hormona Liberadora de Corticotropina/metabolismo , Ayuno/fisiología , Neuronas GABAérgicas/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Sistema Hipotálamo-Hipofisario/citología , Sistema Hipotálamo-Hipofisario/metabolismo , Neuronas/metabolismo , Núcleo Hipotalámico Paraventricular/citología , Núcleo Hipotalámico Paraventricular/metabolismo , Sistema Hipófiso-Suprarrenal/citología , Sistema Hipófiso-Suprarrenal/inervación , Sistema Hipófiso-Suprarrenal/metabolismo , Terminales Presinápticos/metabolismo , Núcleos Septales/citología , Núcleos Septales/metabolismo
2.
Elife ; 102021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33871356

RESUMEN

The forebrain hemispheres are predominantly separated during embryogenesis by the interhemispheric fissure (IHF). Radial astroglia remodel the IHF to form a continuous substrate between the hemispheres for midline crossing of the corpus callosum (CC) and hippocampal commissure (HC). Deleted in colorectal carcinoma (DCC) and netrin 1 (NTN1) are molecules that have an evolutionarily conserved function in commissural axon guidance. The CC and HC are absent in Dcc and Ntn1 knockout mice, while other commissures are only partially affected, suggesting an additional aetiology in forebrain commissure formation. Here, we find that these molecules play a critical role in regulating astroglial development and IHF remodelling during CC and HC formation. Human subjects with DCC mutations display disrupted IHF remodelling associated with CC and HC malformations. Thus, axon guidance molecules such as DCC and NTN1 first regulate the formation of a midline substrate for dorsal commissures prior to their role in regulating axonal growth and guidance across it.


Asunto(s)
Astrocitos/metabolismo , Cuerpo Calloso/metabolismo , Receptor DCC/metabolismo , Telencéfalo/metabolismo , Agenesia del Cuerpo Calloso/genética , Agenesia del Cuerpo Calloso/metabolismo , Agenesia del Cuerpo Calloso/patología , Animales , Células COS , Línea Celular Tumoral , Movimiento Celular , Forma de la Célula , Chlorocebus aethiops , Cuerpo Calloso/embriología , Receptor DCC/genética , Regulación del Desarrollo de la Expresión Génica , Genotipo , Edad Gestacional , Células HEK293 , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Morfogénesis , Mutación , Netrina-1/genética , Netrina-1/metabolismo , Fenotipo , Transducción de Señal , Telencéfalo/embriología
3.
Proc Natl Acad Sci U S A ; 116(27): 13670-13679, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31213533

RESUMEN

Leptin informs the brain about sufficiency of fuel stores. When insufficient, leptin levels fall, triggering compensatory increases in appetite. Falling leptin is first sensed by hypothalamic neurons, which then initiate adaptive responses. With regard to hunger, it is thought that leptin-sensing neurons work entirely via circuits within the central nervous system (CNS). Very unexpectedly, however, we now show this is not the case. Instead, stimulation of hunger requires an intervening endocrine step, namely activation of the hypothalamic-pituitary-adrenocortical (HPA) axis. Increased corticosterone then activates AgRP neurons to fully increase hunger. Importantly, this is true for 2 forms of low leptin-induced hunger, fasting and poorly controlled type 1 diabetes. Hypoglycemia, which also stimulates hunger by activating CNS neurons, albeit independently of leptin, similarly recruits and requires this pathway by which HPA axis activity stimulates AgRP neurons. Thus, HPA axis regulation of AgRP neurons is a previously underappreciated step in homeostatic regulation of hunger.


Asunto(s)
Hambre/fisiología , Sistema Hipotálamo-Hipofisario/fisiología , Leptina/fisiología , Sistema Hipófiso-Suprarrenal/fisiología , Hormona Adrenocorticotrópica/sangre , Animales , Ingestión de Alimentos/fisiología , Ayuno/fisiología , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Insulina/farmacología , Leptina/sangre , Masculino , Mifepristona/farmacología , Sistema Hipófiso-Suprarrenal/efectos de los fármacos , Ratas , Receptores de Glucocorticoides/antagonistas & inhibidores
4.
Nat Neurosci ; 20(10): 1384-1394, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28825719

RESUMEN

The complex behaviors underlying reward seeking and consumption are integral to organism survival. The hypothalamus and mesolimbic dopamine system are key mediators of these behaviors, yet regulation of appetitive and consummatory behaviors outside of these regions is poorly understood. The central nucleus of the amygdala (CeA) has been implicated in feeding and reward, but the neurons and circuit mechanisms that positively regulate these behaviors remain unclear. Here, we defined the neuronal mechanisms by which CeA neurons promote food consumption. Using in vivo activity manipulations and Ca2+ imaging in mice, we found that GABAergic serotonin receptor 2a (Htr2a)-expressing CeA neurons modulate food consumption, promote positive reinforcement and are active in vivo during eating. We demonstrated electrophysiologically, anatomically and behaviorally that intra-CeA and long-range circuit mechanisms underlie these behaviors. Finally, we showed that CeAHtr2a neurons receive inputs from feeding-relevant brain regions. Our results illustrate how defined CeA neural circuits positively regulate food consumption.


Asunto(s)
Núcleo Amigdalino Central/citología , Núcleo Amigdalino Central/fisiología , Ingestión de Alimentos/fisiología , Vías Nerviosas/fisiología , Refuerzo en Psicología , Animales , Condicionamiento Operante/fisiología , Masculino , Ratones , Ratones Transgénicos , Inhibición Neural/fisiología , Neuronas/metabolismo , Neuronas/fisiología , Núcleos Parabraquiales/fisiología , Receptor de Serotonina 5-HT2C/metabolismo , Esquema de Refuerzo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...