RESUMEN
Approximately 20% of patients with myeloproliferative neoplasms (MPN) harbor mutations in the gene calreticulin (CALR), with 80% of those mutations classified as either type I or type II. While type II CALR-mutant proteins retain many of the Ca2+ binding sites present in the wild-type protein, type I CALR-mutant proteins lose these residues. The functional consequences of this differential loss of Ca2+ binding sites remain unexplored. Here, we show that the loss of Ca2+ binding residues in the type I mutant CALR protein directly impairs its Ca2+ binding ability, which in turn leads to depleted endoplasmic reticulum (ER) Ca2+ and subsequent activation of the IRE1α/XBP1 pathway of the unfolded protein response. Genetic or pharmacologic inhibition of IRE1α/XBP1 signaling induces cell death in type I mutant but not type II mutant or wild-type CALR-expressing cells, and abrogates type I mutant CALR-driven MPN disease progression in vivo. SIGNIFICANCE: Current targeted therapies for CALR-mutated MPNs are not curative and fail to differentiate between type I- versus type II-driven disease. To improve treatment strategies, it is critical to identify CALR mutation type-specific vulnerabilities. Here we show that IRE1α/XBP1 represents a unique, targetable dependency specific to type I CALR-mutated MPNs. This article is highlighted in the In This Issue feature, p. 265.
Asunto(s)
Calreticulina , Trastornos Mieloproliferativos , Neoplasias , Respuesta de Proteína Desplegada , Calcio/metabolismo , Calreticulina/genética , Endorribonucleasas/genética , Humanos , Proteínas Mutantes/química , Mutación , Trastornos Mieloproliferativos/genética , Proteínas Serina-Treonina Quinasas/genética , Proteína 1 de Unión a la X-Box/genéticaRESUMEN
Cells use a variety of mechanisms to maintain optimal mitochondrial function including the mitochondrial unfolded protein response (UPRmt). The UPRmt mitigates mitochondrial dysfunction by differentially regulating mitoprotective gene expression through the transcription factor ATFS-1. Since UPRmt activation is commensurate with organismal benefits such as extended lifespan and host protection during infection, we sought to identify pathways that promote its stimulation. Using unbiased forward genetics screening, we isolated novel mutant alleles that could activate the UPRmt. Interestingly, we identified one reduction of function mutant allele (osa3) in the mitochondrial ribosomal gene mrpl-2 that activated the UPRmt in a diet-dependent manner. We find that mrpl-2(osa3) mutants lived longer and survived better during pathogen infection depending on the diet they were fed. A diet containing low levels of vitamin B12 could activate the UPRmt in mrpl-2(osa3) animals. Also, we find that the vitamin B12-dependent enzyme methionine synthase intersects with mrpl-2(osa3) to activate the UPRmt and confer animal lifespan extension at the level of ATFS-1. Thus, we present a novel gene-diet pairing that promotes animal longevity that is mediated by the UPRmt.