Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Curr Res Insect Sci ; 6: 100092, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39224195

RESUMEN

Standard metabolic rates (SMR) of ectotherms reflect the energetic cost of self-maintenance and thus provide important information about life-history strategies of organisms. We examined variation in SMR among fifteen species of New Zealand orthopteran. These species represent a heterogeneous group with a wide geographic distribution, differing morphologies and life histories. Gathering original data on morphological and physiological traits of individual species is a first step towards understanding existing variability. Individual metabolic rates of ectotherms are one of the first traits to respond to climate change. Baseline SMR datasets are valuable for modeling current species distributions and their responses to a changing climate. At higher latitudes, the average environmental temperature decreases. The pattern that cold-adapted ectotherms display higher SMR at colder temperatures and greater thermal sensitivity to compensate for lower temperatures and the shorter growing and reproductive seasons is predicted from the metabolic cold adaptation (MCA) hypothesis. We predict higher SMR for the orthopteran species found at higher latitudes. We further compared the index of thermal sensitivity Q10 per species. We used closed-system respirometry to measure SMR, at two test temperatures (4 °C and 14 °C), for the fifteen species acclimated to the same conditions. As expected, we found significant differences in SMR among species. The rate of oxygen consumption was positively correlated with body mass. Our findings do not support the MCA hypothesis. In fact, we found evidence of co-gradient variation in SMR, whereby insects from higher elevations and latitudes presented lower SMR. We discuss our findings in relation to life histories and ecology of each species. The novel physiological data presented will aid in understanding potential responses of these unusual species to changing climatic conditions in Aotearoa/New Zealand.

2.
R Soc Open Sci ; 11(2): 231118, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38356874

RESUMEN

The biota of continents and islands are commonly considered to have a source-sink relationship, but small islands can harbour distinctive taxa. The distribution of four monotypic genera of Orthoptera on young subantarctic islands indicates a role for long-distance dispersal and extinction. Phylogenetic relationships were inferred from whole mtDNA genomes and nuclear sequences (45S cassette; four histones). We used a fossil and one palaeogeographic event to calibrate molecular clock analysis. We confirm that neither the Australian nor Aotearoa-New Zealand Rhaphidophoridae faunas are monophyletic. The radiation of Macropathinae may have begun in the late Jurassic, but trans-oceanic dispersal is required to explain the current distribution of some lineages within this subfamily. Dating the most recent common ancestor of seven island endemic species with their nearest mainland relative suggests that each existed long before their island home was available. Time estimates from our fossil-calibrated molecular clock analysis suggest several lineages have not been detected on mainland New Zealand, Australia, or elsewhere most probably due to their extinction, providing evidence that patterns of extinction, which are not consistently linked to range size or lineage age, confound biogeographic signal.

3.
Mol Ecol Resour ; 23(5): 990-1001, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36740220

RESUMEN

Almost every animal trait is strongly associated with parasitic infection or the potential exposure to parasites. Despite this importance, one of the greatest challenges that researchers still face is to accurately determine the status and severity of the endoparasitic infection without killing and dissecting the host. Thus, the precise detection of infection with minimal handling of the individual will improve experimental designs in live animal research. Here, we quantified extracellular DNA from two species of endoparasitic worm that grow within the host body cavity, hairworms (phylum Nematomorpha) and mermithids (phylum Nematoda), from the frass of their insect host, a cave weta (Orthoptera: Rhaphidophoridae) and an earwig (Dermaptera: Forficulidae), respectively. Frass collection was done at two successive time periods, to test if parasitic growth correlated with relative DNA quantity in the frass. We developed and optimized two highly specific TaqMan assays, one for each parasite-specific DNA amplification. We were able to detect infection prevalence with 100% accuracy in individuals identified as infected through post-study dissections. An additional infection in earwigs was detected with the TaqMan assay alone, probably because some worms were either too small or degraded to observe during dissection. No difference in DNA quantity was detected between sampling periods, although future protocols could be refined to support such a trend. This study demonstrates that a noninvasive and minimally stressful method can be used to detect endoparasitic infection with greater accuracy than dissection alone, helping improve protocols for live animal studies.


Asunto(s)
Helmintos , Nematodos , Ortópteros , Animales , Insectos
4.
Biol J Linn Soc Lond ; 127(1): 24-33, 2019 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-31186586

RESUMEN

The Apennine Mountains in Italy are an important biogeographical region and of particular interest in phylogeographical research, because they have been a refugium during Pleistocene glaciation events for numerous European species. We performed a genetic study on the Eurasian bark beetle Pityogenes chalcographus (Linnaeus, 1760), focusing on two Apennine (Italian) and two Central European (Austrian) locations to assess the influence of the Apennines in the evolutionary history of the beetle, particularly during the Pleistocene. We analysed a part of the mitochondrial COI gene and a set of 5470 informative genome-wide markers to understand its biogeography. We found 75 distinct mitochondrial haplotypes, which are structured in three main clades. In general, the Apennine locations harbour a higher number of mitochondrial clades than Central European sites, with one specific clade exclusively detected in the Apennines. Analysis of our genome-wide, multi-locus dataset reveals a clustering of P. chalcographus by geography, with Italian individuals clearly separated from Austrian samples. Our data highlight the significance of the Apennines for the genetic diversity of P. chalcographus and support the hypothesis that this area was an important refugium during unfavourable conditions in the Pleistocene. We discuss additional life-history traits and processes that shaped the evolution of this widespread beetle.

5.
Sci Rep ; 8(1): 14207, 2018 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-30242185

RESUMEN

Historical climatic oscillations and co-evolutionary dependencies were key evolutionary drivers shaping the current population structure of numerous organisms. Here, we present a genome-wide study on the biogeography of the bark beetle Pityogenes chalcographus, a common and widespread insect in Eurasia. Using Restriction Associated DNA Sequencing, we studied the population structure of this beetle across a wide part of its western Palaearctic range with the goal of elucidating the role of Pleistocene glacial-interglacial cycling and its close relationship to its main host plant Norway spruce. Genetic distance among geographic sites was generally low, but clustering analysis revealed three genetically distinct groups, that is, southern, central/south-eastern, and north-eastern locations. Thus, three key P. chalcographus glacial refugia were identified: in the Italian-Dinaric region, the Carpathians, and the Russian plain, shared with its main host. The current phylogeographic signal was affected by genetic divergence among geographically isolated refugia during glacial periods and postglacial re-establishment of genetic exchange through secondary contact, reflected by admixture among genetic groups. Additionally, certain life history traits, like the beetle's dispersal and reproductive behaviour, considerably influenced its demographic history. Our results will help to understand the biogeography of other scolytine beetles, especially species with similar life history traits.


Asunto(s)
Escarabajos/genética , Animales , Evolución Biológica , ADN Mitocondrial/genética , Demografía , Evolución Molecular , Variación Genética/genética , Estudio de Asociación del Genoma Completo/métodos , Haplotipos/genética , Noruega , Filogenia , Filogeografía/métodos , Corteza de la Planta , Refugio de Fauna , Reproducción/genética , Federación de Rusia , Análisis de Secuencia de ADN/métodos
6.
Mol Ecol ; 26(21): 6071-6084, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29116665

RESUMEN

Chromosomal rearrangement can be an important mechanism driving population differentiation and incipient speciation. In the mountain pine beetle (MPB, Dendroctonus ponderosae), deletions on the Y chromosome that are polymorphic among populations are associated with reproductive incompatibility. Here, we used RAD sequencing across the entire MPB range in western North America to reveal the extent of the phylogeographic differences between Y haplotypes compared to autosomal and X-linked loci. Clustering and geneflow analyses revealed three distinct Y haplogroups geographically positioned within and on either side of the Great Basin Desert. Despite close geographic proximity between populations on the boundaries of each Y haplogroup, there was extremely low Y haplogroup mixing among populations, and gene flow on the autosomes was reduced across Y haplogroup boundaries. These results are consistent with a previous study suggesting that independent degradation of a recently evolved neo-Y chromosome in previously isolated populations causes male sterility or inviability among Y haplotype lineages. Phylogeographic results supported historic contraction of MPB into three separate Pleistocene glacial refugia followed by postglacial range expansion and secondary contact. Distinct sets of SNPs were statistically associated with environmental data among the most genetically distinct sets of geographic populations. This finding suggests that the process of adaptation to local climatic conditions is influenced by population genetic structure, with evidence for largely independent evolution in the most genetically isolated Y haplogroup.


Asunto(s)
Adaptación Biológica , Genética de Población , Aislamiento Reproductivo , Gorgojos/genética , Animales , Clima , Femenino , Flujo Génico , Haplotipos , Masculino , América del Norte , Filogeografía , Polimorfismo de Nucleótido Simple , Refugio de Fauna , Cromosoma X , Cromosoma Y
7.
Mol Ecol Resour ; 16(5): 1240-54, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26583904

RESUMEN

Recent studies have advocated biomonitoring using DNA techniques. In this study, two high-throughput sequencing (HTS)-based methods were evaluated: amplicon metabarcoding of the cytochrome C oxidase subunit I (COI) mitochondrial gene and gene enrichment using MYbaits (targeting nine different genes including COI). The gene-enrichment method does not require PCR amplification and thus avoids biases associated with universal primers. Macroinvertebrate samples were collected from 12 New Zealand rivers. Macroinvertebrates were morphologically identified and enumerated, and their biomass determined. DNA was extracted from all macroinvertebrate samples and HTS undertaken using the illumina miseq platform. Macroinvertebrate communities were characterized from sequence data using either six genes (three of the original nine were not used) or just the COI gene in isolation. The gene-enrichment method (all genes) detected the highest number of taxa and obtained the strongest Spearman rank correlations between the number of sequence reads, abundance and biomass in 67% of the samples. Median detection rates across rare (<1% of the total abundance or biomass), moderately abundant (1-5%) and highly abundant (>5%) taxa were highest using the gene-enrichment method (all genes). Our data indicated primer biases occurred during amplicon metabarcoding with greater than 80% of sequence reads originating from one taxon in several samples. The accuracy and sensitivity of both HTS methods would be improved with more comprehensive reference sequence databases. The data from this study illustrate the challenges of using PCR amplification-based methods for biomonitoring and highlight the potential benefits of using approaches, such as gene enrichment, which circumvent the need for an initial PCR step.


Asunto(s)
Monitoreo del Ambiente/métodos , Agua Dulce/parasitología , Invertebrados/clasificación , Invertebrados/genética , Metagenómica/métodos , Animales , ADN/genética , ADN/aislamiento & purificación , Código de Barras del ADN Taxonómico/métodos , Errores Diagnósticos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Nueva Zelanda , Reacción en Cadena de la Polimerasa/métodos , Ríos/parasitología
8.
BMC Evol Biol ; 14: 216, 2014 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-25318347

RESUMEN

BACKGROUND: Gene flow is traditionally considered a limitation to speciation because selection is required to counter the homogenising effect of allele exchange. Here we report on two sympatric short-horned grasshoppers species in the South Island of New Zealand; one (Sigaus australis) widespread and the other (Sigaus childi) a narrow endemic. RESULTS: Of the 79 putatively neutral markers (mtDNA, microsatellite loci, ITS sequences and RAD-seq SNPs) all but one marker we examined showed extensive allele sharing, and similar or identical allele frequencies in the two species where they co-occur. We found no genetic evidence of deviation from random mating in the region of sympatry. However, analysis of morphological and geometric traits revealed no evidence of morphological introgression. CONCLUSIONS: Based on phenotype the two species are clearly distinct, but their genotypes thus far reveal no divergence. The best explanation for this is that some loci associated with the distinguishing morphological characters are under strong selection, but exchange of neutral loci is occurring freely between the two species. Although it is easier to define species as requiring a barrier between them, a dynamic model that accommodates gene flow is a biologically more reasonable explanation for these grasshoppers.


Asunto(s)
Flujo Génico , Saltamontes/clasificación , Saltamontes/genética , Animales , ADN Mitocondrial/genética , Especies en Peligro de Extinción , Frecuencia de los Genes , Saltamontes/anatomía & histología , Repeticiones de Microsatélite , Nueva Zelanda , Simpatría
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...