Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Arch Biochem Biophys ; 758: 110048, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38848996

RESUMEN

The inherent structural properties of enzymes are critical in defining catalytic function. Often, studies to evaluate the relationship between structure and function are limited to only one defined structural element. The two-component flavin-dependent desulfonase family of enzymes involved in bacterial sulfur acquisition utilize a comprehensive range of structural features to carry out the desulfonation of organosulfur compounds. These metabolically essential two-component FMN-dependent desulfonase systems have been proposed to utilize oligomeric changes, protein-protein interactions for flavin transfer, and common mechanistic steps for carbon-sulfur bond cleavage. This review is focused on our current functional and structural understanding of two-component FMN-dependent desulfonase systems from multiple bacterial sources. Mechanistic and structural comparisons from recent independent studies provide fresh insights into the overall functional properties of these systems and note areas in need of further investigation. The review acknowledges current studies focused on evaluating the structural properties of these enzymes in relationship to their distinct catalytic function. The role of these enzymes in maintaining adequate sulfur levels, coupled with the conserved nature of these enzymes in diverse bacteria, underscore the importance in understanding the functional and structural nuances of these systems.


Asunto(s)
Proteínas Bacterianas , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Bacterias/enzimología , Compuestos de Azufre/metabolismo , Compuestos de Azufre/química , Hidrolasas/química , Hidrolasas/metabolismo , Mononucleótido de Flavina/metabolismo , Mononucleótido de Flavina/química , Azufre/metabolismo , Azufre/química , Flavinas/metabolismo , Flavinas/química , Relación Estructura-Actividad , Carbono/metabolismo , Carbono/química
2.
J Biol Chem ; 299(10): 105222, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37673337

RESUMEN

Many microorganisms use both biological and nonbiological molecules as sources of carbon and energy. This resourcefulness means that some microorganisms have mechanisms to assimilate pollutants found in the environment. One such organism is Comamonas testosteroni, which metabolizes 4-methylbenzenesulfonate and 4-methylbenzoate using the TsaMBCD pathway. TsaM is a Rieske oxygenase, which in concert with the reductase TsaB consumes a molar equivalent of NADH. Following this step, the annotated short-chain dehydrogenase/reductase and aldehyde dehydrogenase enzymes TsaC and TsaD each regenerate a molar equivalent of NADH. This co-occurrence ameliorates the need for stoichiometric addition of reducing equivalents and thus represents an attractive strategy for integration of Rieske oxygenase chemistry into biocatalytic applications. Therefore, in this work, to overcome the lack of information regarding NADH recycling enzymes that function in partnership with Rieske non-heme iron oxygenases (Rieske oxygenases), we solved the X-ray crystal structure of TsaC to a resolution of 2.18 Å. Using this structure, a series of substrate analog and protein variant combination reactions, and differential scanning fluorimetry experiments, we identified active site features involved in binding NAD+ and controlling substrate specificity. Further in vitro enzyme cascade experiments demonstrated the efficient TsaC- and TsaD-mediated regeneration of NADH to support Rieske oxygenase chemistry. Finally, through in-depth bioinformatic analyses, we illustrate the widespread co-occurrence of Rieske oxygenases with TsaC-like enzymes. This work thus demonstrates the utility of these NADH recycling enzymes and identifies a library of short-chain dehydrogenase/reductase enzyme prospects that can be used in Rieske oxygenase pathways for in situ regeneration of NADH.


Asunto(s)
Proteínas Bacterianas , Comamonas testosteroni , Oxigenasas , Aldehído Deshidrogenasa/metabolismo , NAD/metabolismo , Oxigenasas/metabolismo , Especificidad por Sustrato , Comamonas testosteroni/enzimología , Comamonas testosteroni/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de Hierro no Heme/química , Proteínas de Hierro no Heme/genética , Proteínas de Hierro no Heme/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Estructura Terciaria de Proteína , Modelos Moleculares , Estabilidad Proteica , Biología Computacional
3.
Curr Opin Chem Biol ; 72: 102228, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36402006

RESUMEN

Ox-/thiazoline groups in nonribosomal peptides are formed by a variant of peptide-forming condensation domains called heterocyclization (Cy) domains and appear in a range of pharmaceutically important natural products and virulence factors. Recent cryo-EM, crystallographic, and NMR studies of Cy domains make it opportune to revisit outstanding questions regarding their molecular mechanisms. This review covers structural and dynamical findings about Cy domains that will inform future bioengineering efforts and our understanding of natural product synthesis.


Asunto(s)
Péptido Sintasas , Péptidos , Ciclización , Péptido Sintasas/metabolismo , Dominios Proteicos
4.
J Biol Chem ; 298(10): 102454, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36063993

RESUMEN

Nonribosomal peptide synthetase heterocyclization (Cy) domains generate biologically important oxazoline/thiazoline groups found in natural products, including pharmaceuticals and virulence factors such as some siderophores. Cy domains catalyze consecutive condensation and cyclodehydration reactions, although the mechanism is unknown. To better understand Cy domain catalysis, here we report the crystal structure of the second Cy domain (Cy2) of yersiniabactin synthetase from the causative agent of the plague, Yersinia pestis. Our high-resolution structure of Cy2 adopts a conformation that enables exploration of interactions with the extended thiazoline-containing cyclodehydration intermediate and the acceptor carrier protein (CP) to which it is tethered. We also report complementary electrostatic interfaces between Cy2 and its donor CP that mediate donor binding. Finally, we explored domain flexibility through normal mode analysis and identified small-molecule fragment-binding sites that may inform future antibiotic design targeting Cy function. Our results suggest how CP binding may influence global Cy conformations, with consequences for active-site remodeling to facilitate the separate condensation and cyclodehydration steps as well as potential inhibitor development.


Asunto(s)
Dominio Catalítico , Péptido Sintasas , Yersinia pestis , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Péptido Sintasas/química , Péptido Sintasas/metabolismo , Sideróforos/metabolismo , Yersinia pestis/química , Yersinia pestis/enzimología
5.
Sci Adv ; 8(28): eabn6549, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35857508

RESUMEN

Biological activity is governed by the timely redistribution of molecular interactions, and static structural snapshots often appear insufficient to provide the molecular determinants that choreograph communication. This conundrum applies to multidomain enzymatic systems called nonribosomal peptide synthetases (NRPSs), which assemble simple substrates into complex metabolites, where a dynamic domain organization challenges rational design to produce new pharmaceuticals. Using a nuclear magnetic resonance (NMR) atomic-level readout of biochemical transformations, we demonstrate that global structural fluctuations help promote substrate-dependent communication and allosteric responses, and impeding these global dynamics by a point-site mutation hampers allostery and molecular recognition. Our results establish global structural dynamics as sensors of molecular events that can remodel domain interactions, and they provide new perspectives on mechanisms of allostery, protein communication, and NRPS synthesis.

6.
Nucleic Acids Res ; 50(6): 3001-3017, 2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-34522950

RESUMEN

The DNAs of bacterial viruses are known to contain diverse, chemically complex modifications to thymidine that protect them from the endonuclease-based defenses of their cellular hosts, but whose biosynthetic origins are enigmatic. Up to half of thymidines in the Pseudomonas phage M6, the Salmonella phage ViI, and others, contain exotic chemical moieties synthesized through the post-replicative modification of 5-hydroxymethyluridine (5-hmdU). We have determined that these thymidine hypermodifications are derived from free amino acids enzymatically installed on 5-hmdU. These appended amino acids are further sculpted by various enzyme classes such as radical SAM isomerases, PLP-dependent decarboxylases, flavin-dependent lyases and acetyltransferases. The combinatorial permutations of thymidine hypermodification genes found in viral metagenomes from geographically widespread sources suggests an untapped reservoir of chemical diversity in DNA hypermodifications.


Asunto(s)
Bacteriófagos , Liasas , Aminoácidos/metabolismo , Bacteriófagos/genética , ADN/metabolismo , Timidina/metabolismo
7.
J Biol Chem ; 297(1): 100823, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34029591

RESUMEN

Bacterial two-component flavin-dependent monooxygenases cleave the stable C-S bond of environmental and anthropogenic organosulfur compounds. The monooxygenase MsuD converts methanesulfonate (MS-) to sulfite, completing the sulfur assimilation process during sulfate starvation, but the mechanism of this conversion remains unclear. To explore the mechanism of C-S bond cleavage, we report a series of crystal structures of MsuD from Pseudomonas fluorescens in different liganded states. This report provides the first crystal structures of an alkanesulfonate monooxygenase with a bound flavin and alkanesulfonate, elucidating the roles of the active site lid, the protein C terminus, and an active site loop in flavin and/or alkanesulfonate binding. These structures position MS- closest to the flavin N5 position, consistent with an N5-(hydro)peroxyflavin mechanism rather than a classical C4a-(hydro)peroxyflavin mechanism. A fully enclosed active site is observed in the ternary complex, mediated by interchain interaction of the C terminus at the tetramer interface. These structures identify an unexpected function of the protein C terminus in this protein family in stabilizing tetramer formation and the alkanesulfonate-binding site. Spurred by interest from the crystal structures, we conducted biochemical assays and molecular docking that redefine MsuD as a small- to medium-chain alkanesulfonate monooxygenase. Functional mutations verify the sulfonate-binding site and reveal the critical importance of the protein C terminus for monooxygenase function. These findings reveal a deeper understanding of MsuD's functionality at the molecular level and consequently how it operates within its role as part of the sulfur assimilation pathway.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/metabolismo , Multimerización de Proteína , Pseudomonas fluorescens/enzimología , Secuencia de Aminoácidos , Sitios de Unión , Dominio Catalítico , Mononucleótido de Flavina/metabolismo , Mesilatos/metabolismo , Modelos Moleculares , Especificidad por Sustrato , Azufre/metabolismo
8.
Biochem Biophys Res Commun ; 522(1): 107-112, 2020 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-31753487

RESUMEN

Methyl sulfur compounds are a rich source of environmental sulfur for microorganisms, but their use requires redox systems. The bacterial sfn and msu operons contain two-component flavin-dependent monooxygenases for dimethylsulfone (DMSO2) assimilation: SfnG converts DMSO2 to methanesulfinate (MSI-), and MsuD converts methanesulfonate (MS-) to sulfite. However, the enzymatic oxidation of MSI- to MS- has not been demonstrated, and the function of the last enzyme of the msu operon (MsuC) is unresolved. We employed crystallographic and biochemical studies to identify the function of MsuC from Pseudomonas fluorescens. The crystal structure of MsuC adopts the acyl-CoA dehydrogenase fold with putative binding sites for flavin and MSI-, and functional assays of MsuC in the presence of its oxidoreductase MsuE, FMN, and NADH confirm the enzymatic generation of MS-. These studies reveal that MsuC converts MSI- to MS- in sulfite biosynthesis from DMSO2.


Asunto(s)
Proteínas Bacterianas/metabolismo , Pseudomonas fluorescens/enzimología , Azufre/química , Acil-CoA Deshidrogenasa/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Dimerización , Dimetilsulfóxido/química , Flavinas/química , Espectroscopía de Resonancia Magnética , Mesilatos/química , Simulación del Acoplamiento Molecular , Oxidorreductasas/metabolismo , Oxígeno/química , Estructura Secundaria de Proteína , Relación Estructura-Actividad , Sulfuros/química , Sulfonas/química , Tiofenos/química
9.
Protein Sci ; 28(1): 202-215, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30341796

RESUMEN

7-Carboxy-7-deazaguanine synthase, QueE, catalyzes the radical mediated ring contraction of 6-carboxy-5,6,7,8-tetrahydropterin, forming the characteristic pyrrolopyrimidine core of all 7-deazaguanine natural products. QueE is a member of the S-adenosyl-L-methionine (AdoMet) radical enzyme superfamily, which harnesses the reactivity of radical intermediates to perform challenging chemical reactions. Members of the AdoMet radical enzyme superfamily utilize a canonical binding motif, a CX3 CXϕC motif, to bind a [4Fe-4S] cluster, and a partial (ß/α)6 TIM barrel fold for the arrangement of AdoMet and substrates for catalysis. Although variations to both the cluster-binding motif and the core fold have been observed, visualization of drastic variations in the structure of QueE from Burkholderia multivorans called into question whether a re-haul of the defining characteristics of this superfamily was in order. Surprisingly, the structure of QueE from Bacillus subtilis revealed an architecture more reminiscent of the classical AdoMet radical enzyme. With these two QueE structures revealing varying degrees of alterations to the classical AdoMet fold, a new question arises: what is the purpose of these alterations? Here, we present the structure of a third QueE enzyme from Escherichia coli, which establishes the middle range of the spectrum of variation observed in these homologs. With these three homologs, we compare and contrast the structural architecture and make hypotheses about the role of these structural variations in binding and recognizing the biological reductant, flavodoxin. Broader impact statement: We know more about how enzymes are tailored for catalytic activity than about how enzymes are tailored to react with a physiological reductant. Here, we consider structural differences between three 7-carboxy-7-deazaguanine synthases and how these differences may be related to the interaction between these enzymes and their biological reductant, flavodoxin.


Asunto(s)
Liasas de Carbono-Nitrógeno/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Proteínas Hierro-Azufre/química , Secuencias de Aminoácidos , Cristalografía por Rayos X , Flavodoxina , Dominios Proteicos , Especificidad por Sustrato
10.
J Am Chem Soc ; 139(5): 1912-1920, 2017 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-28045519

RESUMEN

Radical S-adenosyl-l-methionine (SAM) enzymes are widely distributed and catalyze diverse reactions. SAM binds to the unique iron atom of a site-differentiated [4Fe-4S] cluster and is reductively cleaved to generate a 5'-deoxyadenosyl radical, which initiates turnover. 7-Carboxy-7-deazaguanine (CDG) synthase (QueE) catalyzes a key step in the biosynthesis of 7-deazapurine containing natural products. 6-Carboxypterin (6-CP), an oxidized analogue of the natural substrate 6-carboxy-5,6,7,8-tetrahydropterin (CPH4), is shown to be an alternate substrate for CDG synthase. Under reducing conditions that would promote the reductive cleavage of SAM, 6-CP is turned over to 6-deoxyadenosylpterin (6-dAP), presumably by radical addition of the 5'-deoxyadenosine followed by oxidative decarboxylation to the product. By contrast, in the absence of the strong reductant, dithionite, the carboxylate of 6-CP is esterified to generate 6-carboxypterin-5'-deoxyadenosyl ester (6-CP-dAdo ester). Structural studies with 6-CP and SAM also reveal electron density consistent with the ester product being formed in crystallo. The differential reactivity of 6-CP under reducing and nonreducing conditions highlights the ability of radical SAM enzymes to carry out both polar and radical transformations in the same active site.


Asunto(s)
Proteínas Bacterianas/metabolismo , Productos Biológicos/metabolismo , Liasas de Carbono-Nitrógeno/metabolismo , Purinas/biosíntesis , S-Adenosilmetionina/metabolismo , Proteínas Bacterianas/química , Biocatálisis , Productos Biológicos/química , Liasas de Carbono-Nitrógeno/química , Cristalografía por Rayos X , Radicales Libres/química , Radicales Libres/metabolismo , Modelos Moleculares , Estructura Molecular , Purinas/química , S-Adenosilmetionina/química
11.
Proc Natl Acad Sci U S A ; 113(44): 12432-12437, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27791103

RESUMEN

Epothilones are thiazole-containing natural products with anticancer activity that are biosynthesized by polyketide synthase (PKS)-nonribosomal peptide synthetase (NRPS) enzymes EpoA-F. A cyclization domain of EpoB (Cy) assembles the thiazole functionality from an acetyl group and l-cysteine via condensation, cyclization, and dehydration. The PKS carrier protein of EpoA contributes the acetyl moiety, guided by a docking domain, whereas an NRPS EpoB carrier protein contributes l-cysteine. To visualize the structure of a cyclization domain with an accompanying docking domain, we solved a 2.03-Å resolution structure of this bidomain EpoB unit, comprising residues M1-Q497 (62 kDa) of the 160-kDa EpoB protein. We find that the N-terminal docking domain is connected to the V-shaped Cy domain by a 20-residue linker but otherwise makes no contacts to Cy. Molecular dynamic simulations and additional crystal structures reveal a high degree of flexibility for this docking domain, emphasizing the modular nature of the components of PKS-NRPS hybrid systems. These structures further reveal two 20-Å-long channels that run from distant sites on the Cy domain to the active site at the core of the enzyme, allowing two carrier proteins to dock with Cy and deliver their substrates simultaneously. Through mutagenesis and activity assays, catalytic residues N335 and D449 have been identified. Surprisingly, these residues do not map to the location of the conserved HHxxxDG motif in the structurally homologous NRPS condensation (C) domain. Thus, although both C and Cy domains have the same basic fold, their active sites appear distinct.


Asunto(s)
Epotilonas/química , Péptido Sintasas/química , Sintasas Poliquetidas/química , Dominios Proteicos , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Vías Biosintéticas/genética , Dominio Catalítico , Cristalografía por Rayos X , Ciclización , Epotilonas/metabolismo , Modelos Moleculares , Myxococcales/genética , Myxococcales/metabolismo , Péptido Sintasas/genética , Péptido Sintasas/metabolismo , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Unión Proteica , Homología de Secuencia de Aminoácido , Tiazoles/química , Tiazoles/metabolismo
12.
Nucleic Acids Res ; 44(20): 9965-9976, 2016 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-27638883

RESUMEN

Queuosine (Q) was discovered in the wobble position of a transfer RNA (tRNA) 47 years ago, yet the final biosynthetic enzyme responsible for Q-maturation, epoxyqueuosine (oQ) reductase (QueG), was only recently identified. QueG is a cobalamin (Cbl)-dependent, [4Fe-4S] cluster-containing protein that produces the hypermodified nucleoside Q in situ on four tRNAs. To understand how QueG is able to perform epoxide reduction, an unprecedented reaction for a Cbl-dependent enzyme, we have determined a series of high resolution structures of QueG from Bacillus subtilis Our structure of QueG bound to a tRNATyr anticodon stem loop shows how this enzyme uses a HEAT-like domain to recognize the appropriate anticodons and position the hypermodified nucleoside into the enzyme active site. We find Q bound directly above the Cbl, consistent with a reaction mechanism that involves the formation of a covalent Cbl-tRNA intermediate. Using protein film electrochemistry, we show that two [4Fe-4S] clusters adjacent to the Cbl have redox potentials in the range expected for Cbl reduction, suggesting how Cbl can be activated for nucleophilic attack on oQ. Together, these structural and electrochemical data inform our understanding of Cbl dependent nucleic acid modification.


Asunto(s)
Procesamiento Postranscripcional del ARN , ARN de Transferencia/química , ARN de Transferencia/genética , Vitamina B 12/química , Anticodón , Bacillus subtilis/genética , Enlace de Hidrógeno , Hierro/química , Modelos Moleculares , Conformación Molecular , Conformación de Ácido Nucleico , Nucleósido Q/análogos & derivados , Nucleósido Q/química , Unión Proteica , Estabilidad del ARN , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN de Transferencia/metabolismo , Ribonucleasas/química , Ribonucleasas/metabolismo , Azufre/química , Vitamina B 12/metabolismo
13.
Nat Chem Biol ; 10(2): 106-12, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24362703

RESUMEN

7-carboxy-7-deazaguanine synthase (QueE) catalyzes a key S-adenosyl-L-methionine (AdoMet)- and Mg(2+)-dependent radical-mediated ring contraction step, which is common to the biosynthetic pathways of all deazapurine-containing compounds. QueE is a member of the AdoMet radical superfamily, which employs the 5'-deoxyadenosyl radical from reductive cleavage of AdoMet to initiate chemistry. To provide a mechanistic rationale for this elaborate transformation, we present the crystal structure of a QueE along with structures of pre- and post-turnover states. We find that substrate binds perpendicular to the [4Fe-4S]-bound AdoMet, exposing its C6 hydrogen atom for abstraction and generating the binding site for Mg(2+), which coordinates directly to the substrate. The Burkholderia multivorans structure reported here varies from all other previously characterized members of the AdoMet radical superfamily in that it contains a hypermodified (ß6/α3) protein core and an expanded cluster-binding motif, CX14CX2C.


Asunto(s)
Magnesio/química , Manganeso/química , Modelos Moleculares , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo , Sodio/química , Sitios de Unión , Burkholderia/enzimología , Radicales Libres/química , Radicales Libres/metabolismo , Enlace de Hidrógeno/efectos de los fármacos , Magnesio/farmacología , Manganeso/farmacología , Estructura Molecular , Estructura Terciaria de Proteína , Sodio/farmacología
14.
Biochim Biophys Acta ; 1824(11): 1178-95, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22579873

RESUMEN

AdoMet radical enzymes are involved in processes such as cofactor biosynthesis, anaerobic metabolism, and natural product biosynthesis. These enzymes utilize the reductive cleavage of S-adenosylmethionine (AdoMet) to afford l-methionine and a transient 5'-deoxyadenosyl radical, which subsequently generates a substrate radical species. By harnessing radical reactivity, the AdoMet radical enzyme superfamily is responsible for an incredible diversity of chemical transformations. Structural analysis reveals that family members adopt a full or partial Triose-phosphate Isomerase Mutase (TIM) barrel protein fold, containing core motifs responsible for binding a catalytic [4Fe-4S] cluster and AdoMet. Here we evaluate over twenty structures of AdoMet radical enzymes and classify them into two categories: 'traditional' and 'ThiC-like' (named for the structure of 4-amino-5-hydroxymethyl-2-methylpyrimidine phosphate synthase (ThiC)). In light of new structural data, we reexamine the 'traditional' structural motifs responsible for binding the [4Fe-4S] cluster and AdoMet, and compare and contrast these motifs with the ThiC case. We also review how structural data combine with biochemical, spectroscopic, and computational data to help us understand key features of this enzyme superfamily, such as the energetics, the triggering, and the molecular mechanisms of AdoMet reductive cleavage. This article is part of a Special Issue entitled: Radical SAM Enzymes and Radical Enzymology.


Asunto(s)
Proteínas Bacterianas/química , Coenzimas/metabolismo , Transferasas Intramoleculares/química , Proteínas Hierro-Azufre/química , S-Adenosilmetionina/metabolismo , Triosa-Fosfato Isomerasa/química , Secuencias de Aminoácidos , Proteínas Bacterianas/metabolismo , Coenzimas/química , Radicales Libres/química , Radicales Libres/metabolismo , Humanos , Transferasas Intramoleculares/metabolismo , Proteínas Hierro-Azufre/metabolismo , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , S-Adenosilmetionina/química , Termodinámica , Triosa-Fosfato Isomerasa/metabolismo
15.
Annu Rev Biophys ; 41: 403-27, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22577824

RESUMEN

The ability of enzymes to harness free-radical chemistry allows for some of the most amazing transformations in nature, including reduction of ribonucleotides and carbon skeleton rearrangements. Enzyme cofactors involved in this chemistry can be large and complex, such as adenosylcobalamin (coenzyme B(12)), simpler, such as S-adenosylmethionine and an iron-sulfur cluster (i.e., poor man's B(12)), or very small, such as one nonheme iron atom coordinated by protein ligands. Although the chemistry catalyzed by these enzyme-bound cofactors is unparalleled, it does come at a price. The enzyme must be able to control these radical reactions, preventing unwanted chemistry and protecting the enzyme active site from damage. Here, we consider a set of radical folds: the (ß/α)(8) or TIM barrel, combined with a Rossmann domain for coenzyme B(12)-dependent chemistry. Using specific enzyme examples, we consider how nature employs the common TIM barrel fold and its Rossmann domain partner for radical-based chemistry.


Asunto(s)
Bacterias/química , Cobamidas/química , Bacterias/enzimología , Catálisis , Dominio Catalítico , Radicales Libres/química , Radicales Libres/metabolismo , Humanos , Transferasas Intramoleculares/química , Transferasas Intramoleculares/metabolismo , Hierro/metabolismo , Ligandos , Metilmalonil-CoA Mutasa/química , Metilmalonil-CoA Mutasa/metabolismo , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo , Vitamina B 12/química , Vitamina B 12/metabolismo
16.
Bioorg Med Chem Lett ; 21(19): 5854-8, 2011 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-21875805

RESUMEN

As part of our continuing search for new amino acid inhibitors of metalloenzymes, we now report the synthesis and biological evaluation of the trifluoromethylketone analogue of L-arginine, (S)-2-amino-8,8,8-trifluoro-7-oxo-octanoic acid (10). While this novel amino acid was initially designed as a potential inhibitor of human arginase I, it exhibits no measurable inhibitory activity against this enzyme. Surprisingly, however, 10 is a potent inhibitor of human histone deacetylase 8, with IC(50)=1.5 ± 0.2 µM. Additionally, 10 weakly inhibits the related bacterial enzyme, acetylpolyamine amidohydrolase, with IC(50)=110 ± 30 µM. The lack of inhibitory activity against human arginase I may result from unfavorable interactions of the bulky trifluoromethyl group of 10 in the constricted active site. Since the active site of histone deacetylase 8 is less constricted, we hypothesize that it accommodates 10 as the gem-diol, which mimics the tetrahedral intermediate and its flanking transition states in catalysis. Therefore, we suggest that 10 represents a new lead in the design of an amino acid or peptide-based inhibitor of histone deacetylases with simpler structure than previously studied trifluoromethylketones.


Asunto(s)
Aminoácidos/síntesis química , Aminoácidos/farmacología , Arginasa/antagonistas & inhibidores , Diseño de Fármacos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Proteínas Represoras/antagonistas & inhibidores , Secuencia de Aminoácidos , Aminoácidos/química , Aminoácidos/toxicidad , Dominio Catalítico , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/toxicidad , Histona Desacetilasas , Humanos , Concentración 50 Inhibidora , Isoenzimas/metabolismo , Cetonas/química , Metales/química , Estructura Molecular , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Neoplasias/prevención & control , Proteínas Recombinantes , Relación Estructura-Actividad
17.
Curr Opin Struct Biol ; 21(6): 735-43, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21872466

RESUMEN

Metal-dependent histone deacetylases (HDACs) catalyze the hydrolysis of acetyl-L-lysine side chains in histone and nonhistone proteins to yield l-lysine and acetate. This chemistry plays a critical role in the regulation of numerous biological processes. Aberrant HDAC activity is implicated in various diseases, and HDACs are validated targets for drug design. Two HDAC inhibitors are currently approved for cancer chemotherapy, and other inhibitors are in clinical trials. To date, X-ray crystal structures are available for four human HDACs (2, 4, 7, and 8) and three HDAC-related deacetylases from bacteria (histone deacetylase-like protein (HDLP); histone deacetylase-like amidohydrolase (HDAH); acetylpolyamine amidohydrolase (APAH)). Structural comparisons among these enzymes reveal a conserved constellation of active site residues, suggesting a common mechanism for the metal-dependent hydrolysis of acetylated substrates. Structural analyses of HDACs and HDAC-related deacetylases guide the design of tight-binding inhibitors, and future prospects for developing isozyme-specific inhibitors are quite promising.


Asunto(s)
Inhibidores de Histona Desacetilasas/química , Histona Desacetilasas/química , Metaloproteínas/química , Acetilación , Animales , Dominio Catalítico , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Inhibidores de Histona Desacetilasas/metabolismo , Histona Desacetilasas/metabolismo , Humanos , Lisina/genética , Lisina/metabolismo , Metaloproteínas/metabolismo , Conformación Proteica
18.
J Med Chem ; 54(15): 5432-43, 2011 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-21728378

RESUMEN

Arginase is a binuclear manganese metalloenzyme that hydrolyzes L-arginine to form L-ornithine and urea, and aberrant arginase activity is implicated in various diseases such as erectile dysfunction, asthma, atherosclerosis, and cerebral malaria. Accordingly, arginase inhibitors may be therapeutically useful. Continuing our efforts to expand the chemical space of arginase inhibitor design and inspired by the binding of 2-(difluoromethyl)-L-ornithine to human arginase I, we now report the first study of the binding of α,α-disubstituted amino acids to arginase. Specifically, we report the design, synthesis, and assay of racemic 2-amino-6-borono-2-methylhexanoic acid and racemic 2-amino-6-borono-2-(difluoromethyl)hexanoic acid. X-ray crystal structures of human arginase I and Plasmodium falciparum arginase complexed with these inhibitors reveal the exclusive binding of the L-stereoisomer; the additional α-substituent of each inhibitor is readily accommodated and makes new intermolecular interactions in the outer active site of each enzyme. Therefore, this work highlights a new region of the protein surface that can be targeted for additional affinity interactions, as well as the first comparative structural insights on inhibitor discrimination between a human and a parasitic arginase.


Asunto(s)
Aminoácidos/química , Arginasa/antagonistas & inhibidores , Ácidos Borónicos/metabolismo , Inhibidores Enzimáticos/química , Aminoácidos/síntesis química , Aminoácidos/metabolismo , Aminoácidos/farmacología , Arginasa/química , Ácidos Borónicos/síntesis química , Ácidos Borónicos/química , Ácidos Borónicos/farmacología , Eflornitina/química , Humanos , Modelos Moleculares , Plasmodium falciparum/enzimología , Estereoisomerismo
19.
J Am Chem Soc ; 133(32): 12474-7, 2011 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-21790156

RESUMEN

Largazole is a macrocyclic depsipeptide originally isolated from the marine cyanobacterium Symploca sp., which is indigenous to the warm, blue-green waters of Key Largo, Florida (whence largazole derives its name). Largazole contains an unusual thiazoline-thiazole ring system that rigidifies its macrocyclic skeleton, and it also contains a lipophilic thioester side chain. Hydrolysis of the thioester in vivo yields largazole thiol, which exhibits remarkable antiproliferative effects and is believed to be the most potent inhibitor of the metal-dependent histone deacetylases (HDACs). Here, the 2.14 Å-resolution crystal structure of the HDAC8-largazole thiol complex is the first of an HDAC complexed with a macrocyclic inhibitor and reveals that ideal thiolate-zinc coordination geometry is the key chemical feature responsible for its exceptional affinity and biological activity. Notably, the core structure of largazole is conserved in romidepsin, a depsipeptide natural product formulated as the drug Istodax recently approved for cancer chemotherapy. Accordingly, the structure of the HDAC8-largazole thiol complex is the first to illustrate the mode of action of a new class of therapeutically important HDAC inhibitors.


Asunto(s)
Depsipéptidos/química , Depsipéptidos/farmacología , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Proteínas Represoras/metabolismo , Tiazoles/química , Tiazoles/farmacología , Cristalografía por Rayos X , Cianobacterias/química , Histona Desacetilasas/química , Humanos , Modelos Moleculares , Proteínas Represoras/química
20.
Biochemistry ; 49(26): 5600-8, 2010 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-20527960

RESUMEN

The 2.15 A resolution crystal structure of arginase from Plasmodium falciparum, the parasite that causes cerebral malaria, is reported in complex with the boronic acid inhibitor 2(S)-amino-6-boronohexanoic acid (ABH) (K(d) = 11 microM). This is the first crystal structure of a parasitic arginase. Various protein constructs were explored to identify an optimally active enzyme form for inhibition and structural studies and to probe the structure and function of two polypeptide insertions unique to malarial arginase: a 74-residue low-complexity region contained in loop L2 and an 11-residue segment contained in loop L8. Structural studies indicate that the low-complexity region is largely disordered and is oriented away from the trimer interface; its deletion does not significantly compromise enzyme activity. The loop L8 insertion is located at the trimer interface and makes several intra- and intermolecular interactions important for enzyme function. In addition, we also demonstrate that arg- Plasmodium berghei sporozoites show significantly decreased liver infectivity in vivo. Therefore, inhibition of malarial arginase may serve as a possible candidate for antimalarial therapy against liver-stage infection, and ABH may serve as a lead for the development of inhibitors.


Asunto(s)
Arginasa/química , Arginina/metabolismo , Malaria/parasitología , Plasmodium falciparum/enzimología , Cristalografía por Rayos X , Humanos , Hígado/parasitología , Plasmodium berghei , Conformación Proteica , Esporozoítos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...