Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 717: 149992, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38714013

RESUMEN

Insects have about 50 neuropeptide genes and about 70 genes, coding for neuropeptide G protein-coupled receptors (GPCRs). An important, but small family of evolutionarily related insect neuropeptides consists of adipokinetic hormone (AKH), corazonin, and AKH/corazonin-related peptide (ACP). Normally, insects have one specific GPCR for each of these neuropeptides. The tick Ixodes scapularis is not an insect, but belongs to the subphylum Chelicerata, which comprises ticks, scorpions, mites, spiders, and horseshoe crabs. Many of the neuropeptides and neuropeptide GPCRs occurring in insects, also occur in chelicerates, illustrating that insects and chelicerates are evolutionarily closely related. The tick I. scapularis is an ectoparasite and health risk for humans, because it infects its human host with dangerous pathogens during a blood meal. Understanding the biology of ticks will help researchers to prevent tick-borne diseases. By annotating the I. scapularis genome sequence, we previously found that ticks contain as many as five genes, coding for presumed ACP receptors. In the current paper, we cloned these receptors and expressed each of them in Chinese Hamster Ovary (CHO) cells. Each expressed receptor was activated by nanomolar concentrations of ACP, demonstrating that all five receptors were functional ACP receptors. Phylogenetic tree analyses showed that the cloned tick ACP receptors were mostly related to insect ACP receptors and, next, to insect AKH receptors, suggesting that ACP receptor genes and AKH receptor genes originated by gene duplications from a common ancestor. Similar duplications have probably occurred for the ligand genes, during a process of ligand/receptor co-evolution. Interestingly, chelicerates, in contrast to all other arthropods, do not have AKH or AKH receptor genes. Therefore, the ancestor of chelicerates might have lost AKH and AKH receptor genes and functionally replaced them by ACP and ACP receptor genes. For the small family of AKH, ACP, and corazonin receptors and their ligands, gene losses and gene gains occur frequently between the various ecdysozoan clades. Tardigrades, for example, which are well known for their survival in extreme environments, have as many as ten corazonin receptor genes and six corazonin peptide genes, while insects only have one of each, or none.


Asunto(s)
Hormonas de Insectos , Ixodes , Neuropéptidos , Oligopéptidos , Ácido Pirrolidona Carboxílico , Receptores Acoplados a Proteínas G , Animales , Neuropéptidos/metabolismo , Neuropéptidos/genética , Hormonas de Insectos/metabolismo , Hormonas de Insectos/genética , Ixodes/metabolismo , Ixodes/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Oligopéptidos/metabolismo , Oligopéptidos/genética , Oligopéptidos/química , Ácido Pirrolidona Carboxílico/análogos & derivados , Ácido Pirrolidona Carboxílico/metabolismo , Filogenia , Secuencia de Aminoácidos , Cricetulus , Células CHO , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Receptores de Neuropéptido/metabolismo , Receptores de Neuropéptido/genética
2.
Physiol Genomics ; 53(1): 33-46, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33346689

RESUMEN

Circulating cell-free DNA (cfDNA) and RNA (cfRNA) hold enormous potential as a new class of biomarkers for the development of noninvasive liquid biopsies in many diseases and conditions. In recent years, cfDNA and cfRNA have been studied intensely as tools for noninvasive prenatal testing, solid organ transplantation, cancer screening, and monitoring of tumors. In obesity, higher cfDNA concentration indicates accelerated cellular turnover of adipocytes during expansion of adipose mass and may be directly involved in the development of adipose tissue insulin resistance by inducing inflammation. Furthermore, cfDNA and cfRNA have promising diagnostic value in a range of obesity-related metabolic disorders, such as nonalcoholic fatty liver disease, type 2 diabetes, and diabetic complications. Here, we review the current and future applications of cfDNA and cfRNA within clinical diagnostics, discuss technical and analytical challenges in the field, and summarize the opportunities of using cfDNA and cfRNA in the diagnostics and prognostics of obesity-related metabolic disorders.


Asunto(s)
Ácidos Nucleicos Libres de Células/metabolismo , Enfermedades Metabólicas/diagnóstico , Enfermedades Metabólicas/genética , ARN/metabolismo , Biomarcadores/metabolismo , Ácidos Nucleicos Libres de Células/sangre , Humanos , ARN/sangre
3.
Physiol Genomics ; 51(10): 488-499, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31373884

RESUMEN

Characterization of genetic variants affecting genome-wide gene expression levels (expression quantitative trait loci or eQTLs) in pig testes may improve our understanding of genetic architecture of boar taint (an animal welfare trait) and helps in genome-assisted or genomic selection programs. The aims of this study were to identify eQTLs associated with androstenone, to find candidate eQTLs for low androstenone, and to validate the top eQTL by reverse transcriptase quantitative PCR (RT-qPCR). Gene expression profiles were obtained by RNA sequencing in testis from Danish cross-bred pigs and genotype data by 80K single nucleotide polymorphism panel. A total of 262 eQTLs [false discovery rate (FDR) < 0.05] were identified by using two software packages: Matrix eQTL and Krux eQTL. Of these, 149 cis-acting eQTLs were significantly associated with androstenone concentrations and gene expression (FDR < 0.05). The eQTLs were associated with several genes of boar taint relevance including CYP1A2, CYB5D1, and SPHK2. One eQTL gene, AMPH, was differentially expressed (FDR < 0.05) and affected by chicory. Five candidate eQTLs associated with low androstenone concentrations were discovered, including the top eQTL associated with CYP1A2. RT-qPCR confirmed target gene expression to be significantly (P < 0.05) different based on eQTL genotypes. Furthermore, eQTLs were enriched as QTLs for 15 boar taint related traits from the PigQTLdb. This is the first study to report eQTLs in testes of commercial crossbred pigs used in pork production and to reveal genetic architecture of boar taint. Potential applications include development of a DNA test and in advanced genomic selection models for boar taint.


Asunto(s)
Androsterona/química , Odorantes/prevención & control , Sitios de Carácter Cuantitativo/genética , RNA-Seq , Sus scrofa/genética , Testículo , Bienestar del Animal , Animales , Cruzamiento , Cichorium intybus/química , ADN/genética , Femenino , Genotipo , Masculino , Orquiectomía/veterinaria , Concentración Osmolar , Extractos Vegetales/farmacología , Polimorfismo de Nucleótido Simple , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA