Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Fungi (Basel) ; 7(9)2021 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-34575736

RESUMEN

Occupational mold exposure can lead to Aspergillus-associated allergic diseases including asthma and hypersensitivity pneumonitis. Elevated IL-17 levels or disbalanced T-helper (Th) cell expansion were previously linked to Aspergillus-associated allergic diseases, whereas alterations to the Th cell repertoire in healthy occupationally exposed subjects are scarcely studied. Therefore, we employed functional immunoassays to compare Th cell responses to A. fumigatus antigens in organic farmers, a cohort frequently exposed to environmental molds, and non-occupationally exposed controls. Organic farmers harbored significantly higher A. fumigatus-specific Th-cell frequencies than controls, with comparable expansion of Th1- and Th2-cell frequencies but only slightly elevated Th17-cell frequencies. Accordingly, Aspergillus antigen-induced Th1 and Th2 cytokine levels were strongly elevated, whereas induction of IL-17A was minimal. Additionally, increased levels of some innate immune cell-derived cytokines were found in samples from organic farmers. Antigen-induced cytokine release combined with Aspergillus-specific Th-cell frequencies resulted in high classification accuracy between organic farmers and controls. Aspf22, CatB, and CipC elicited the strongest differences in Th1 and Th2 responses between the two cohorts, suggesting these antigens as potential candidates for future bio-effect monitoring approaches. Overall, we found that occupationally exposed agricultural workers display a largely balanced co-expansion of Th1 and Th2 immunity with only minor changes in Th17 responses.

2.
J Fungi (Basel) ; 7(6)2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-34201183

RESUMEN

Deeper understanding of mold-induced cytokine signatures could promote advances in the diagnosis and treatment of invasive mycoses and mold-associated hypersensitivity syndromes. Currently, most T-cellular immunoassays in medical mycology require the isolation of mononuclear cells and have limited robustness and practicability, hampering their broader applicability in clinical practice. Therefore, we developed a simple, cost-efficient whole blood (WB) assay with dual α-CD28 and α-CD49d co-stimulation to quantify cytokine secretion in response to Aspergillus fumigatus antigens. Dual co-stimulation strongly enhanced A. fumigatus-induced release of T-cellular signature cytokines detectable by enzyme-linked immunosorbent assay (ELISA) or a multiplex cytokine assay. Furthermore, T-cell-dependent activation and cytokine response of innate immune cells was captured by the assay. The protocol consistently showed little technical variation and high robustness to pre-analytic delays of up to 8 h. Stimulation with an A. fumigatus lysate elicited at least 7-fold greater median concentrations of key T-helper cell signature cytokines, including IL-17 and the type 2 T-helper cell cytokines IL-4 and IL-5 in WB samples from patients with Aspergillus-associated lung pathologies versus patients with non-mold-related lung diseases, suggesting high discriminatory power of the assay. These results position WB-ELISA with dual co-stimulation as a simple, accurate, and robust immunoassay for translational applications, encouraging further evaluation as a platform to monitor host immunity to opportunistic pathogens.

3.
ALTEX ; 37(3): 429-440, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32302003

RESUMEN

With cellular products being on the front run there is a rising demand for non-animal-based test platforms to predict, study and treat undesired immunity. Here, we generated human organotypic skin models from human biopsies isolating and expanding keratinocytes, fibroblasts and microvascular endothelial cells finally allowing to seed these components on a collagen matrix or a biological vascularized scaffold matrix in a bioreactor. Afterwards, we were able to induce inflammation-based tissue damage by pre-stimulated mismatched allogeneic lymphocytes and/or inflammatory cytokine containing supernatants histomorphologically mimicking severe graft versus host disease (GvHD) of the skin. The effects could be prevented by the addition of immunosuppressants to the models. Consequently, these models would harbor a promising potential to serve as a test platform for the prediction, prevention and treatment of GvHD. This would also allow functional studies of immune effectors and suppressors including but not limited to allodepleted lymphocytes, gamma-delta T cells, regulatory T cells and mesenchymal stromal cells which would otherwise be limited to animal models. Thus, the current test platform developed with the limitation given that no professional APC are in place could highly reduce animal testing for investigation of novel immune therapies.


Asunto(s)
Alternativas a las Pruebas en Animales , Enfermedad Injerto contra Huésped/patología , Inmunosupresores/uso terapéutico , Modelos Biológicos , Piel/patología , Humanos , Linfocitos/fisiología , Andamios del Tejido
4.
Int J Med Microbiol ; 308(8): 1018-1026, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30201279

RESUMEN

Mold specific T-cells have been described as a supportive biomarker to monitor invasive mycoses and mold exposure. This study comparatively evaluated frequencies and cytokine profiles of Aspergillus fumigatus and Mucorales reactive T-cells depending on environmental mold exposure. Peripheral blood mononuclear cells (PBMCs) obtained from 35 healthy donors were stimulated with mycelial lysates of A. fumigatus and three human pathogenic Mucorales species. CD154+ specific T-cells were quantified by flow cytometry. In a second cohort of 20 additional donors, flow cytometry was complemented by 13-plex cytokine assays. Mold exposure of the subjects was determined using a previously established questionnaire. Highly exposed subjects exhibited significantly greater CD154+A. fumigatus and Mucorales specific naïve and memory T-helper cell frequencies. Significant correlation (r = 0.48 - 0.79) was found between A. fumigatus and Mucorales specific T-cell numbers. Logistic regression analyses revealed that combined analysis of mold specific T-cell frequencies and selected cytokine markers (A. fumigatus: IL-5 and TNF-α, R. arrhizus: IL-17A and IL-13) significantly improves classification performance, resulting in 75-90 % predictive power using 10-fold cross-validation. In conclusion, mold specific T-cell frequencies and their cytokine signatures offer promising potential in the assessment of environmental mold exposure. The cytokines identified in this pilot study should be validated in the clinical setting, e. g. in patients with hypersensitivity pneumonitis.


Asunto(s)
Aspergilosis/inmunología , Aspergillus fumigatus/inmunología , Exposición a Riesgos Ambientales , Leucocitos Mononucleares/inmunología , Rhizomucor/inmunología , Rhizopus/inmunología , Células TH1/inmunología , Adulto , Aspergilosis/microbiología , Aspergillus fumigatus/crecimiento & desarrollo , Biomarcadores/metabolismo , Estudios de Cohortes , Citocinas/metabolismo , Femenino , Humanos , Leucocitos Mononucleares/microbiología , Masculino , Mucormicosis/microbiología , Rhizomucor/crecimiento & desarrollo , Rhizopus/crecimiento & desarrollo , Células TH1/microbiología
5.
Mycoses ; 61(8): 549-560, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29611226

RESUMEN

Mould-specific T cells detectable by flow cytometry or ELISPOT were proposed as a novel biomarker in invasive aspergillosis. To define protocols facilitating sample shipment and longitudinal analysis, this study evaluated the susceptibility of different functional assays for A. fumigatus-specific T-cell quantification and characterisation to pre-analytic delays. PBMCs from 6 healthy donors were analysed after immediate isolation, after 6 hours whole blood storage or after cryopreservation using 3 different common media. Functional responses to A. fumigatus lysate stimulation were comparatively assessed by flow cytometry, ELISPOT and 14-plex cytokine assay. After 6 hours pre-analytic storage, all functional assays showed reduced detection rates, higher coefficients of variation (CV) and widely varying individual recovery indices of specific T-cell response. While cryopreservation resulted in sufficient yields and largely unaltered cellular composition, outcomes of functional readouts significantly differed from freshly processed samples. For CD154-based flow cytometry, only cryopreservation in RPMI supplemented with autologous serum resulted in satisfactory detection rates and CVs. For ELISPOT and cytokine secretion assays, none of the cryopreservation protocols provided sufficient concordance with immediately processed samples. Even using the same readout platform, individual analytes widely varied in their susceptibility to cryopreservation, highlighting that distinct optimisation is required depending on the downstream assay.


Asunto(s)
Aspergillus fumigatus/inmunología , Sangre/inmunología , Aspergilosis Pulmonar Invasiva/diagnóstico , Manejo de Especímenes/métodos , Linfocitos T/inmunología , Adulto , Citocinas/análisis , Ensayo de Immunospot Ligado a Enzimas , Citometría de Flujo , Humanos , Sensibilidad y Especificidad
6.
Front Microbiol ; 9: 3204, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30671036

RESUMEN

Understanding the mechanisms of early invasion and epithelial defense in opportunistic mold infections is crucial for the evaluation of diagnostic biomarkers and novel treatment strategies. Recent studies revealed unique characteristics of the immunopathology of mucormycoses. We therefore adapted an alveolar Transwell® A549/HPAEC bilayer model for the assessment of epithelial barrier integrity and cytokine response to Rhizopus arrhizus, Rhizomucor pusillus, and Cunninghamella bertholletiae. Hyphal penetration of the alveolar barrier was validated by 18S ribosomal DNA detection in the endothelial compartment. Addition of dendritic cells (moDCs) to the alveolar compartment led to reduced fungal invasion and strongly enhanced pro-inflammatory cytokine response, whereas epithelial CCL2 and CCL5 release was reduced. Despite their phenotypic heterogeneity, the studied Mucorales species elicited the release of similar cytokine patterns by epithelial and dendritic cells. There were significantly elevated lactate dehydrogenase concentrations in the alveolar compartment and epithelial barrier permeability for dextran blue of different molecular weights in Mucorales-infected samples compared to Aspergillus fumigatus infection. Addition of monocyte-derived dendritic cells further aggravated LDH release and epithelial barrier permeability, highlighting the influence of the inflammatory response in mucormycosis-associated tissue damage. An important focus of this study was the evaluation of the reproducibility of readout parameters in independent experimental runs. Our results revealed consistently low coefficients of variation for cytokine concentrations and transcriptional levels of cytokine genes and cell integrity markers. As additional means of model validation, we confirmed that our bilayer model captures key principles of Mucorales biology such as accelerated growth in a hyperglycemic or ketoacidotic environment or reduced epithelial barrier invasion upon epithelial growth factor receptor blockade by gefitinib. Our findings indicate that the Transwell® bilayer model provides a reliable and reproducible tool for assessing host response in mucormycosis.

7.
Virulence ; 8(8): 1708-1718, 2017 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-28783439

RESUMEN

Mucormycoses are life-threatening infections in immunocompromised patients. This study characterizes the response of human mononuclear cells to different Mucorales and Ascomycota. PBMC, monocytes, and monocyte derived dendritic cells (moDCs) from healthy donors were stimulated with resting and germinated stages of Mucorales and Ascomycota. Cytokine response and expression of activation markers were studied. Both inactivated germ tubes and resting spores of Rhizopus arrhizus and other human pathogenic Mucorales species significantly stimulated mRNA synthesis and secretion of proinflammatory cytokines. Moreover, R. arrhizus spores induced the upregulation of co-stimulatory molecules on moDCs and a specific T-helper cell response. Removal of rodlet hydrophobins by hydrofluoric acid treatment of A. fumigatus conidia resulted in enhanced immunogenicity, whereas the cytokine response of PBMCs to dormant R. arrhizus spores was not influenced by hydrofluoric acid. Scanning electron micrographs of Mucorales spores did not exhibit any morphological correlates of rodlet hydrophobins. Taken together, this study revealed striking differences in the response of human mononuclear cells to resting stages of Ascomycota and Mucorales, which may be explained by absence of an immunoprotective hydrophobin layer in Mucorales spores.


Asunto(s)
Proteínas Fúngicas/inmunología , Leucocitos Mononucleares/inmunología , Mucorales/inmunología , Mucormicosis/inmunología , Fagocitos/inmunología , Citocinas , Células Dendríticas/inmunología , Células Dendríticas/microbiología , Proteínas Fúngicas/genética , Humanos , Leucocitos Mononucleares/microbiología , Mucorales/clasificación , Mucorales/fisiología , Mucormicosis/microbiología , Fagocitos/microbiología , Esporas Fúngicas/genética , Esporas Fúngicas/inmunología , Esporas Fúngicas/fisiología , Células TH1/inmunología
8.
Med Mycol ; 52(4): 438-44, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24713403

RESUMEN

In immunocompromised patients, invasive aspergillosis (IA) is the most frequent disease caused by the pathogenic mould Aspergillus fumigatus. Fever is one of the most common yet nonspecific clinical symptoms of IA. To evaluate the role of hyperthermia in the innate immune response to A. fumigatus in vitro, human monocyte-derived dendritic cells (DCs) were stimulated with germ tubes of A. fumigatus or the fungal cell wall component zymosan at 37°C or 40°C, followed by characterization of specific DC functions. While maturation of DCs was enhanced and DC phagocytic capacity was reduced at 40°C, we observed that DC viability and cytokine release were unaffected. Thus, our results suggest that hyperthermia has substantial impacts on DC function in vitro, which might also influence the course and outcome of IA in immunocompromised patients.


Asunto(s)
Aspergillus fumigatus/inmunología , Células Dendríticas/inmunología , Células Dendríticas/efectos de la radiación , Diferenciación Celular/efectos de la radiación , Supervivencia Celular/efectos de la radiación , Citocinas/metabolismo , Calor , Humanos , Fagocitosis/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...