Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
eNeuro ; 7(4)2020.
Artículo en Inglés | MEDLINE | ID: mdl-32737186

RESUMEN

MicroRNAs (miRNAs) fine tune gene expression to regulate many aspects of nervous system physiology. Here, we show that miR-92a suppresses memory consolidation that occurs in the αß and γ mushroom body neurons (MBns) of Drosophila, making miR-92a a memory suppressor miRNA. Bioinformatics analyses suggested that mRNAs encoding kinesin heavy chain 73 (KHC73), a protein that belongs to Kinesin-3 family of anterograde motor proteins, may be a functional target of miR-92a. Behavioral studies that employed expression of khc73 with and without its 3' untranslated region (UTR) containing miR-92a target sites, luciferase assays in HEK cells with reporters containing wild-type and mutant target sequences in the khc73 3'UTR, and immunohistochemistry experiments involving KHC73 expression with and without the wild-type khc73 3'UTR, all point to the conclusion that khc73 is a major target of miR-92a in its functional role as a miRNA memory suppressor gene.


Asunto(s)
Consolidación de la Memoria , MicroARNs , Regiones no Traducidas 3'/genética , Animales , Drosophila , MicroARNs/genética , Cuerpos Pedunculados
2.
Proc Natl Acad Sci U S A ; 114(36): 9737-9742, 2017 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-28827349

RESUMEN

Changes in body temperature can profoundly affect survival. The dramatic longevity-enhancing effect of cold has long been known in organisms ranging from invertebrates to mammals, yet the underlying mechanisms have only recently begun to be uncovered. In the nematode Caenorhabditis elegans, this process is regulated by a thermosensitive membrane TRP channel and the DAF-16/FOXO transcription factor, but in more complex organisms the underpinnings of cold-induced longevity remain largely mysterious. We report that, in Drosophila melanogaster, variation in ambient temperature triggers metabolic changes in protein translation, mitochondrial protein synthesis, and posttranslational regulation of the translation repressor, 4E-BP (eukaryotic translation initiation factor 4E-binding protein). We show that 4E-BP determines Drosophila lifespan in the context of temperature changes, revealing a genetic mechanism for cold-induced longevity in this model organism. Our results suggest that the 4E-BP pathway, chiefly thought of as a nutrient sensor, may represent a master metabolic switch responding to diverse environmental factors.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Factores de Iniciación de Péptidos/metabolismo , Envejecimiento/genética , Envejecimiento/metabolismo , Animales , Animales Modificados Genéticamente , Frío , Proteínas de Drosophila/deficiencia , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Femenino , Técnicas de Inactivación de Genes , Genes de Insecto , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Péptidos y Proteínas de Señalización Intracelular/genética , Longevidad/genética , Longevidad/fisiología , Masculino , Proteínas Mitocondriales/biosíntesis , Factores de Iniciación de Péptidos/deficiencia , Factores de Iniciación de Péptidos/genética , Biosíntesis de Proteínas , Procesamiento Proteico-Postraduccional , Temperatura
3.
Cell Rep ; 16(10): 2763-2776, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27568554

RESUMEN

The uptake of cytoplasmic calcium into mitochondria is critical for a variety of physiological processes, including calcium buffering, metabolism, and cell survival. Here, we demonstrate that inhibiting the mitochondrial calcium uniporter in the Drosophila mushroom body neurons (MBn)-a brain region critical for olfactory memory formation-causes memory impairment without altering the capacity to learn. Inhibiting uniporter activity only during pupation impaired adult memory, whereas the same inhibition during adulthood was without effect. The behavioral impairment was associated with structural defects in MBn, including a decrease in synaptic vesicles and an increased length in the axons of the αß MBn. Our results reveal an in vivo developmental role for the mitochondrial uniporter complex in establishing the necessary structural and functional neuronal substrates for normal memory formation in the adult organism.


Asunto(s)
Envejecimiento/fisiología , Proteínas de Transporte de Catión/antagonistas & inhibidores , Proteínas de Drosophila/antagonistas & inhibidores , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/fisiología , Memoria/fisiología , Animales , Axones/metabolismo , Calcio/metabolismo , Proteínas de Transporte de Catión/metabolismo , Proteínas de Drosophila/metabolismo , Silenciador del Gen , Mitocondrias/metabolismo , Cuerpos Pedunculados/metabolismo , Neuronas/metabolismo , Olfato , Vesículas Sinápticas/metabolismo
4.
J Clin Invest ; 125(1): 263-74, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25485680

RESUMEN

Spinocerebellar ataxia type 28 (SCA28) is a neurodegenerative disease caused by mutations of the mitochondrial protease AFG3L2. The SCA28 mouse model, which is haploinsufficient for Afg3l2, exhibits a progressive decline in motor function and displays dark degeneration of Purkinje cells (PC-DCD) of mitochondrial origin. Here, we determined that mitochondria in cultured Afg3l2-deficient PCs ineffectively buffer evoked Ca²âº peaks, resulting in enhanced cytoplasmic Ca²âº concentrations, which subsequently triggers PC-DCD. This Ca²âº-handling defect is the result of negative synergism between mitochondrial depolarization and altered organelle trafficking to PC dendrites in Afg3l2-mutant cells. In SCA28 mice, partial genetic silencing of the metabotropic glutamate receptor mGluR1 decreased Ca²âº influx in PCs and reversed the ataxic phenotype. Moreover, administration of the ß-lactam antibiotic ceftriaxone, which promotes synaptic glutamate clearance, thereby reducing Ca²âº influx, improved ataxia-associated phenotypes in SCA28 mice when given either prior to or after symptom onset. Together, the results of this study indicate that ineffective mitochondrial Ca²âº handling in PCs underlies SCA28 pathogenesis and suggest that strategies that lower glutamate stimulation of PCs should be further explored as a potential treatment for SCA28 patients.


Asunto(s)
Calcio/metabolismo , Células de Purkinje/fisiología , Degeneraciones Espinocerebelosas/metabolismo , Proteasas ATP-Dependientes/genética , Proteasas ATP-Dependientes/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas , Animales , Señalización del Calcio , Ceftriaxona/farmacología , Ceftriaxona/uso terapéutico , Dendritas/metabolismo , Dendritas/patología , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Humanos , Ratones Endogámicos BALB C , Ratones Transgénicos , Mitocondrias/metabolismo , Mitocondrias/patología , Desempeño Psicomotor , Ataxias Espinocerebelosas/congénito , Degeneraciones Espinocerebelosas/tratamiento farmacológico
5.
Subcell Biochem ; 69: 111-33, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23821146

RESUMEN

Ca(2+) homeostasis in peroxisomes has been an unsolved problem for many years. Recently novel probes to monitor Ca(2+) levels in the lumen of peroxisomes in living cells of both animal and plant cells have been developed. Here we discuss the contrasting results obtained in mammalian cells with chemiluminecsent (aequorin) and fluorescent (cameleon) probes targeted to peroxisomes. We briefly discuss the different characteristics of these probes and the possible pitfalls of the two approaches. We conclude that the contrasting results obtained with the two probes may reflect a heterogeneity among peroxisomes in mammalian cells. We also discuss the results obtained in plant peroxisomes. In particular we demonstrate that Ca(2+) increases in the cytoplasm are mirrored by similar rises of Ca(2+) concentration the lumen of peroxisomes. The increases in peroxisome Ca(2+) level results in the activation of a catalase isoform, CAT3. Other functional roles of peroxisomal Ca(2+) changes in plant physiology are briefly discussed.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Peroxisomas/metabolismo , Plantas/metabolismo , Animales , Técnicas Biosensibles , Homeostasis , Humanos , Cinética , Mediciones Luminiscentes
6.
Proc Natl Acad Sci U S A ; 109(32): 12986-91, 2012 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-22822213

RESUMEN

Mitochondrial ability of shaping Ca(2+) signals has been demonstrated in a large number of cell types, but it is still debated in heart cells. Here, we take advantage of the molecular identification of the mitochondrial Ca(2+) uniporter (MCU) and of unique targeted Ca(2+) probes to directly address this issue. We demonstrate that, during spontaneous Ca(2+) pacing, Ca(2+) peaks on the outer mitochondrial membrane (OMM) are much greater than in the cytoplasm because of a large number of Ca(2+) hot spots generated on the OMM surface. Cytoplasmic Ca(2+) peaks are reduced or enhanced by MCU overexpression and siRNA silencing, respectively; the opposite occurs within the mitochondrial matrix. Accordingly, the extent of contraction is reduced by overexpression of MCU and augmented by its down-regulation. Modulation of MCU levels does not affect the ATP content of the cardiomyocytes. Thus, in neonatal cardiac myocytes, mitochondria significantly contribute to buffering the amplitude of systolic Ca(2+) rises.


Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Citoplasma/metabolismo , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Animales Recién Nacidos , Procesamiento de Imagen Asistido por Computador , Microscopía Fluorescente , Membranas Mitocondriales/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/genética , Ratas , Ratas Wistar
7.
Pflugers Arch ; 464(1): 3-17, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22706634

RESUMEN

Mitochondria from every tissue are quite similar in their capability to accumulate Ca²âº in a process that depends on the electrical potential across the inner membrane; it is catalyzed by a gated channel (named mitochondrial Ca²âº uniporter), the molecular identity of which has only recently been unraveled. The release of accumulated Ca²âº in mitochondria from different tissues is, on the contrary, quite variable, both in terms of speed and mechanism: a Na⁺-dependent efflux in excitable cells (catalyzed by NCLX) and a H⁺/Ca²âº exchanger in other cells. The efficacy of mitochondrial Ca²âº uptake in living cells is strictly dependent on the topological arrangement of the organelles with respect to the source of Ca²âº flowing into the cytoplasm, i.e., plasma membrane or intracellular channels. In turn, the structural and functional relationships between mitochondria and other cellular membranes are dictated by the specific architecture of different cells. Mitochondria not only modulate the amplitude and the kinetics of local and bulk cytoplasmic Ca²âº changes but also depend on the Ca²âº signal for their own functionality, in particular for their capacity to produce ATP. In this review, we summarize the processes involved in mitochondrial Ca²âº handling and its integration in cell physiology, highlighting the main common characteristics as well as key differences, in different tissues.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Mitocondrias/metabolismo , Animales , Antiportadores/metabolismo , Encéfalo/metabolismo , Canales de Calcio/metabolismo , Proteínas de Transporte de Catión/metabolismo , Homeostasis , Humanos , Potencial de la Membrana Mitocondrial , Músculos/metabolismo , Especificidad de Órganos , Intercambiador de Sodio-Calcio/metabolismo
8.
Plant J ; 71(1): 1-13, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22372377

RESUMEN

Here we describe use of a mitochondrial targeted Cameleon to produce stably transformed Arabidopsis plants that enable analyses of mitochondrial Ca²âº dynamics in planta and allow monitoring of the intra-mitochondrial Ca²âº concentration in response to physiological or environmental stimuli. Transgenic plants co-expressing nuclear and mitochondrial targeted Cameleons were also generated and analyzed. Here we show that mitochondrial Ca²âº accumulation is strictly related to the intensity of the cytoplasmic Ca²âº increase, demonstrating a tight association between mitochondrial and cytoplasmic Ca²âº dynamics. However, under all experimental conditions, mitochondrial Ca²âº dynamics were substantially different from those monitored in the cytoplasm, demonstrating that mitochondria do not passively sense cytosolic Ca²âº, but actively modulate the intra-mitochondrial level of the cation. In particular, our analyses show that the kinetics of Ca²âº release from mitochondria are much slower than in the cytoplasm and nucleus. The mechanisms and functional implications of these differences are discussed.


Asunto(s)
Arabidopsis/citología , Calcio/metabolismo , Citoplasma/metabolismo , Mitocondrias/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Unión al Calcio/metabolismo , Colorantes Fluorescentes/metabolismo , Proteínas Luminiscentes/metabolismo , Microscopía Confocal , Presión Osmótica , Raíces de Plantas/citología , Estomas de Plantas/citología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo
9.
EMBO J ; 30(20): 4119-25, 2011 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-21934651

RESUMEN

Mitochondrial Ca(2+) uptake and release play a fundamental role in the control of different physiological processes, such as cytoplasmic Ca(2+) signalling, ATP production and hormone metabolism, while dysregulation of mitochondrial Ca(2+) handling triggers the cascade of events that lead to cell death. The basic mechanisms of mitochondrial Ca(2+) homeostasis have been firmly established for decades, but the molecular identities of the channels and transporters responsible for Ca(2+) uptake and release have remained mysterious until very recently. Here, we briefly review the main findings that have led to our present understanding of mitochondrial Ca(2+) homeostasis and its integration in cell physiology. We will then discuss the recent work that has unravelled the biochemical identity of three key molecules: NCLX, the mitochondrial Na(+)/Ca(2+) antiporter, MCU, the pore-forming subunit of the mitochondrial Ca(2+) uptake channel, and MICU1, one of its regulatory subunits.


Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Mitocondrias/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , Animales , Señalización del Calcio/fisiología , Membranas Mitocondriales/metabolismo , Ratas
10.
Biochim Biophys Acta ; 1797(6-7): 607-18, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20470749

RESUMEN

Calcium handling by mitochondria is a key feature in cell life. It is involved in energy production for cell activity, in buffering and shaping cytosolic calcium rises and also in determining cell fate by triggering or preventing apoptosis. Both mitochondria and the mechanisms involved in the control of calcium homeostasis have been extensively studied, but they still provide researchers with long-standing or even new challenges. Technical improvements in the tools employed for the investigation of calcium dynamics have been-and are still-opening new perspectives in this field, and more prominently for mitochondria. In this review we present a state-of-the-art toolkit for calcium measurements, with major emphasis on the advantages of genetically encoded indicators. These indicators can be efficiently and selectively targeted to specific cellular sub-compartments, allowing previously unavailable high-definition calcium dynamic studies. We also summarize the main features of cellular and, in more detail, mitochondrial calcium handling, especially focusing on the latest breakthroughs in the field, such as the recent direct characterization of the calcium microdomains that occur on the mitochondrial surface upon cellular stimulation. Additionally, we provide a major example of the key role played by calcium in patho-physiology by briefly describing the extensively reported-albeit highly controversial-alterations of calcium homeostasis in Alzheimer's disease, casting lights on the possible alterations in mitochondrial calcium handling in this pathology.


Asunto(s)
Calcio/metabolismo , Mitocondrias/metabolismo , Enfermedad de Alzheimer/metabolismo , Animales , Muerte Celular/fisiología , Retículo Endoplásmico/metabolismo , Metabolismo Energético , Colorantes Fluorescentes , Humanos , Transporte Iónico , Modelos Biológicos
11.
Mol Cell ; 38(2): 280-90, 2010 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-20417605

RESUMEN

Although it is widely accepted that mitochondria in living cells can efficiently uptake Ca(2+) during stimulation because of their vicinity to microdomains of high [Ca(2+)], the direct proof of Ca(2+) hot spots' existence is still lacking. Thanks to a GFP-based Ca(2+) probe localized on the cytosolic surface of the outer mitochondrial membrane, we demonstrate that, upon Ca(2+) mobilization, the [Ca(2+)] in small regions of the mitochondrial surface reaches levels 5- to 10-fold higher than in the bulk cytosol. We also show that the [Ca(2+)] to which mitochondria are exposed during capacitative Ca(2+) influx is similar between near plasma membrane mitochondria and organelles deeply located in the cytoplasm, whereas it is 2- to 3-fold higher in subplasma membrane mitochondria upon activation of voltage-gated Ca(2+) channels. These results demonstrate that mitochondria are exposed to Ca(2+) hot spots close to the ER but are excluded from the regions where capacitative Ca(2+) influx occurs.


Asunto(s)
Señalización del Calcio/fisiología , Calcio/metabolismo , Cationes/metabolismo , Mitocondrias/metabolismo , Canales de Calcio/metabolismo , Línea Celular Tumoral , Membrana Celular/metabolismo , Citosol/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Inmunohistoquímica , Cinética , Microdominios de Membrana/metabolismo , Membranas Mitocondriales/metabolismo , Neoplasias Hipofisarias/patología , Transfección
12.
Plant J ; 62(5): 760-72, 2010 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-20230493

RESUMEN

Oxidative stress is a major challenge for all cells living in an oxygen-based world. Among reactive oxygen species, H2O2, is a well known toxic molecule and, nowadays, considered a specific component of several signalling pathways. In order to gain insight into the roles played by H2O2 in plant cells, it is necessary to have a reliable, specific and non-invasive methodology for its in vivo detection. Hence, the genetically encoded H2O2 sensor HyPer was expressed in plant cells in different subcellular compartments such as cytoplasm and peroxisomes. Moreover, with the use of the new green fluorescent protein (GFP)-based Cameleon Ca2+ indicator, D3cpv-KVK-SKL, targeted to peroxisomes, we demonstrated that the induction of cytoplasmic Ca2+ increase is followed by Ca2+ rise in the peroxisomal lumen. The analyses of HyPer fluorescence ratios were performed in leaf peroxisomes of tobacco and pre- and post-bolting Arabidopsis plants. These analyses allowed us to demonstrate that an intraperoxisomal Ca2+ rise in vivo stimulates catalase activity, increasing peroxisomal H2O2 scavenging efficiency.


Asunto(s)
Arabidopsis/metabolismo , Calcio/metabolismo , Peróxido de Hidrógeno/metabolismo , Estrés Oxidativo , Peroxisomas/metabolismo , Técnicas de Cultivo de Célula , Proteínas Fluorescentes Verdes/metabolismo , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente/metabolismo , ARN de Planta/metabolismo
13.
J Biol Chem ; 283(21): 14384-90, 2008 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-18362140

RESUMEN

We here describe the generation of novel, green fluorescent protein-based Ca(2+) indicators targeted to the peroxisome lumen. We show that (i) the Ca(2+) concentration of peroxisomes in living cells at rest is similar to that of the cytosol; (ii) increases in cytosolic Ca(2+) concentration (elicited by either Ca(2+) mobilization from stores or Ca(2+) influx through plasma membrane Ca(2+) channels) are followed by a slow rise in intraperoxisomal [Ca(2+)]; (iii) Ca(2+) influx into peroxisomes is driven neither by an ATP-dependent pump nor by membrane potential nor by a H(+)(Na(+)) gradient. The peroxisomal membrane appears to play a low pass filter role, preventing the organelle from taking up shortlasting cytosolic Ca(2+) transients but allowing equilibration of the peroxisomal luminal [Ca(2+)] with that of the cytosol during prolonged Ca(2+) increases. Thus, peroxisomes appear to be an additional cytosolic Ca(2+) buffer, but their influx and efflux mechanisms are unlike those of any other cellular organelle.


Asunto(s)
Calcio/metabolismo , Peroxisomas/metabolismo , Transporte Biológico , Calibración , Línea Celular , Supervivencia Celular , Genes Reporteros/genética , Humanos , Concentración de Iones de Hidrógeno , Somatotrofos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...