Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Am J Physiol Gastrointest Liver Physiol ; 316(3): G412-G424, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30605011

RESUMEN

Takeda G protein-coupled receptor 5 (TGR5) agonists induce systemic release of glucagon-like peptides (GLPs) from intestinal L cells, a potentially therapeutic action against metabolic diseases such as nonalcoholic steatohepatitis (NASH), nonalcoholic fatty liver disease (NAFLD), and Type 2 diabetes. Historically, TGR5 agonist use has been hindered by side effects, including inhibition of gallbladder emptying. Here, we characterize RDX8940, a novel, orally administered TGR5 agonist designed to have minimal systemic effects and investigate its activity in mice fed a Western diet, a model of NAFLD and mild insulin resistance. Agonist activity, binding selectivity, toxicity, solubility, and permeability of RDX8940 were characterized in standard in vitro models. RDX8940 pharmacokinetics and effects on GLP secretion, insulin sensitivity, and liver steatosis were assessed in C57BL/6 mice fed normal or Western diet chow and given single or repeated doses of RDX8940 or vehicle, with or without dipeptidyl peptidase-4 (DPP4) inhibitors. Gallbladder effects were assessed in CD-1 mice fed normal chow and given RDX8940 or a systemic TGR5 agonist or vehicle. Our results showed that RDX8940 is minimally systemic, potent, and selective, and induces incretin (GLP-1, GLP-2, and peptide YY) secretion. RDX8940-induced increases in plasma active GLP-1 (aGLP-1) levels were enhanced by repeated dosing and by coadministration of DPP4 inhibitors. RDX8940 increased hepatic exposure to aGLP-1 without requiring coadministration of a DPP4 inhibitor. In mice fed a Western diet, RDX8940 improved liver steatosis and insulin sensitivity. Unlike systemic TGR5 agonists, RDX8940 did not inhibit gallbladder emptying. These results indicate that RDX8940 may have therapeutic potential in patients with NAFLD/NASH. NEW & NOTEWORTHY Takeda G protein-coupled receptor 5 (TGR5) agonists have potential as a treatment for nonalcoholic steatohepatitis and nonalcoholic fatty liver disease (NAFLD) but have until now been associated with undesirable side effects associated with systemic TGR5 agonism, including blockade of gallbladder emptying. We demonstrate that RDX8940, a potent, selective, minimally systemic oral TGR5 agonist, improves liver steatosis and insulin sensitivity in a mouse model of NAFLD and does not inhibit gallbladder emptying in mice.


Asunto(s)
Dieta Occidental/efectos adversos , Hipoglucemiantes/farmacología , Hígado/efectos de los fármacos , Receptores Acoplados a Proteínas G/agonistas , Animales , Modelos Animales de Enfermedad , Péptido 1 Similar al Glucagón/metabolismo , Resistencia a la Insulina/fisiología , Intestinos/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo
2.
Sci Transl Med ; 10(456)2018 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-30158152

RESUMEN

Hyperphosphatemia is common in patients with chronic kidney disease and is increasingly associated with poor clinical outcomes. Current management of hyperphosphatemia with dietary restriction and oral phosphate binders often proves inadequate. Tenapanor, a minimally absorbed, small-molecule inhibitor of the sodium/hydrogen exchanger isoform 3 (NHE3), acts locally in the gastrointestinal tract to inhibit sodium absorption. Because tenapanor also reduces intestinal phosphate absorption, it may have potential as a therapy for hyperphosphatemia. We investigated the mechanism by which tenapanor reduces gastrointestinal phosphate uptake, using in vivo studies in rodents and translational experiments on human small intestinal stem cell-derived enteroid monolayers to model ion transport physiology. We found that tenapanor produces its effect by modulating tight junctions, which increases transepithelial electrical resistance (TEER) and reduces permeability to phosphate, reducing paracellular phosphate absorption. NHE3-deficient monolayers mimicked the phosphate phenotype of tenapanor treatment, and tenapanor did not affect TEER or phosphate flux in the absence of NHE3. Tenapanor also prevents active transcellular phosphate absorption compensation by decreasing the expression of NaPi2b, the major active intestinal phosphate transporter. In healthy human volunteers, tenapanor (15 mg, given twice daily for 4 days) increased stool phosphorus and decreased urinary phosphorus excretion. We determined that tenapanor reduces intestinal phosphate absorption predominantly through reduction of passive paracellular phosphate flux, an effect mediated exclusively via on-target NHE3 inhibition.


Asunto(s)
Permeabilidad de la Membrana Celular/efectos de los fármacos , Tracto Gastrointestinal/metabolismo , Isoquinolinas/farmacología , Fosfatos/metabolismo , Intercambiador 3 de Sodio-Hidrógeno/antagonistas & inhibidores , Sulfonamidas/farmacología , Adulto , Anciano , Animales , Secuencia de Bases , Células Cultivadas , Impedancia Eléctrica , Epitelio/metabolismo , Femenino , Voluntarios Sanos , Humanos , Concentración de Iones de Hidrógeno , Absorción Intestinal/efectos de los fármacos , Iones/orina , Masculino , Ratones , Persona de Mediana Edad , Potasio/metabolismo , Protones , Ratas , Sodio/metabolismo , Intercambiador 3 de Sodio-Hidrógeno/metabolismo , Proteínas de Uniones Estrechas/metabolismo , Adulto Joven
3.
J Org Chem ; 64(15): 5472-5478, 1999 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-11674609

RESUMEN

Diastereoselective enolate alkylation reactions of N-acylsulfinamides and conversion of the alkylation products to a variety of enantiopure products are reported. Several sulfinamides were prepared in solution followed by acylation to provide N-acylsulfinamides. The N-acylsulfinamides were then evaluated in diastereoselective enolate alkylation reactions. Of the sulfinamides evaluated, tert-butanesulfinamide provided the highest diastereoselectivity. To establish the potential utility of sulfinamides as versatile auxiliaries, methods were developed for (1) the racemization-free acylation of tert-butanesulfinamide to prepare optically pure N-acyl-tert-butanesulfinamides, (2) the diastereoselective C-alkylation of N-acyl-tert-butanesulfinamides, (3) the conversion of the N-acyl-tert-butanesulfinamides to the active ester equivalent by N-alkylation and S-oxidation, and (4) the cleavage of the N-alkyl-N-acyl-tert-butanesulfonamides to give chiral alcohol, ester, amide, and carboxylic acid target compounds. These studies provide the groundwork for the development of sulfinamides as dual chiral auxiliaries and linkers for the multistep solid-phase synthesis of enantioenriched compounds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...