Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Adv Nutr ; 15(6): 100238, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38729263

RESUMEN

Vaccines can prevent infectious diseases, but their efficacy varies, and factors impacting vaccine effectiveness remain unclear. Iron deficiency is the most common nutrient deficiency, affecting >2 billion individuals. It is particularly common in areas with high infectious disease burden and in groups that are routinely vaccinated, such as infants, pregnant women, and the elderly. Recent evidence suggests that iron deficiency and low serum iron (hypoferremia) not only cause anemia but also may impair adaptive immunity and vaccine efficacy. A report of human immunodeficiency caused by defective iron transport underscored the necessity of iron for adaptive immune responses and spurred research in this area. Sufficient iron is essential for optimal production of plasmablasts and IgG responses by human B-cells in vitro and in vivo. The increased metabolism of activated lymphocytes depends on the high-iron acquisition, and hypoferremia, especially when occurring during lymphocyte expansion, adversely affects multiple facets of adaptive immunity, and may lead to prolonged inhibition of T-cell memory. In mice, hypoferremia suppresses the adaptive immune response to influenza infection, resulting in more severe pulmonary disease. In African infants, anemia and/or iron deficiency at the time of vaccination predict decreased response to diphtheria, pertussis, and pneumococcal vaccines, and response to measles vaccine may be increased by iron supplementation. In this review, we examine the emerging evidence that iron deficiency may limit adaptive immunity and vaccine responses. We discuss the molecular mechanisms and evidence from animal and human studies, highlight important unknowns, and propose a framework of key research questions to better understand iron-vaccine interactions.


Asunto(s)
Inmunidad Adaptativa , Deficiencias de Hierro , Hierro , Eficacia de las Vacunas , Humanos , Animales , Anemia Ferropénica/prevención & control , Anemia Ferropénica/inmunología , Femenino , Estado Nutricional , Ratones , Embarazo , Vacunación , Vacunas/inmunología , Lactante
2.
Artículo en Inglés | MEDLINE | ID: mdl-38760200

RESUMEN

Iron deficiency is globally prevalent, causing an array of developmental, haematological, immunological, neurological, and cardiometabolic impairments, and is associated with symptoms ranging from chronic fatigue to hair loss. Within cells, iron is utilised in a variety of ways by hundreds of different proteins. Here, we review links between molecular activities regulated by iron and the pathophysiological effects of iron deficiency. We identify specific enzyme groups, biochemical pathways, cellular functions, and cell lineages that are particularly iron dependent. We provide examples of how iron deprivation influences multiple key systems and tissues, including immunity, hormone synthesis, and cholesterol metabolism. We propose that greater mechanistic understanding of how cellular iron influences physiological processes may lead to new therapeutic opportunities across a range of diseases.

3.
Nat Immunol ; 25(3): 471-482, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38429458

RESUMEN

Persistent symptoms following SARS-CoV-2 infection are increasingly reported, although the drivers of post-acute sequelae (PASC) of COVID-19 are unclear. Here we assessed 214 individuals infected with SARS-CoV-2, with varying disease severity, for one year from COVID-19 symptom onset to determine the early correlates of PASC. A multivariate signature detected beyond two weeks of disease, encompassing unresolving inflammation, anemia, low serum iron, altered iron-homeostasis gene expression and emerging stress erythropoiesis; differentiated those who reported PASC months later, irrespective of COVID-19 severity. A whole-blood heme-metabolism signature, enriched in hospitalized patients at month 1-3 post onset, coincided with pronounced iron-deficient reticulocytosis. Lymphopenia and low numbers of dendritic cells persisted in those with PASC, and single-cell analysis reported iron maldistribution, suggesting monocyte iron loading and increased iron demand in proliferating lymphocytes. Thus, defects in iron homeostasis, dysregulated erythropoiesis and immune dysfunction due to COVID-19 possibly contribute to inefficient oxygen transport, inflammatory disequilibrium and persisting symptomatology, and may be therapeutically tractable.


Asunto(s)
COVID-19 , Hierro , Humanos , Eritropoyesis , SARS-CoV-2 , Investigadores , Progresión de la Enfermedad
4.
EMBO Rep ; 25(3): 1106-1129, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38308064

RESUMEN

Herpesviruses modulate immune control to secure lifelong infection. The mechanisms Human Cytomegalovirus (HCMV) employs in this regard can reveal unanticipated aspects of cellular signaling involved in antiviral immunity. Here, we describe a novel relationship between the TGF-ß family cytokine BMP9 and HCMV infection. We identify a cross-talk between BMP9-induced and IFN receptor-mediated signaling, showing that BMP9 boosts the transcriptional response to and antiviral activity of IFNß, thereby enhancing viral restriction. We also show that BMP9 is secreted by human fibroblasts upon HCMV infection. However, HCMV infection impairs BMP9-induced enhancement of the IFNß response, indicating that this signaling role of BMP9 is actively targeted by HCMV. Indeed, transmembrane proteins US18 and US20, which downregulate type I BMP receptors, are necessary and sufficient to cause inhibition of BMP9-mediated boosting of the antiviral response to IFNß. HCMV lacking US18 and US20 is more sensitive to IFNß. Thus, HCMV has a mutually antagonistic relationship with BMP9, which extends the growing body of evidence that BMP signaling is an underappreciated modulator of innate immunity in response to viral infection.


Asunto(s)
Factor 2 de Diferenciación de Crecimiento , Inmunidad Innata , Humanos , Citocinas/metabolismo , Citomegalovirus/metabolismo , Factor 2 de Diferenciación de Crecimiento/metabolismo , Transducción de Señal
5.
Cell Host Microbe ; 32(1): 1-2, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38211560

RESUMEN

Iron is arguably the most important nutrient in the ongoing battle between hosts and bacteria. Recently in Nature, a unique iron storage organelle, the ferrosome, was discovered in the human pathogen Clostridioides difficile.1 But what is the role of ferrosomes and how do they affect bacterial behavior and infection?


Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , Humanos , Hierro , Infecciones por Clostridium/microbiología
6.
Leukemia ; 38(1): 96-108, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37857886

RESUMEN

Iron overload (IOL) is hypothesized to contribute to dysplastic erythropoiesis. Several conditions, including myelodysplastic syndrome, thalassemia and sickle cell anemia, are characterized by ineffective erythropoiesis and IOL. Iron is pro-oxidant and may participate in the pathophysiology of these conditions by increasing genomic instability and altering the microenvironment. There is, however, lack of in vivo evidence demonstrating a role of IOL and oxidative damage in dysplastic erythropoiesis. NRF2 transcription factor is the master regulator of antioxidant defenses, playing a crucial role in the cellular response to IOL in the liver. Here, we crossed Nrf2-/- with hemochromatosis (Hfe-/-) or hepcidin-null (Hamp1-/-) mice. Double-knockout mice developed features of ineffective erythropoiesis and myelodysplasia including macrocytic anemia, splenomegaly, and accumulation of immature dysplastic bone marrow (BM) cells. BM cells from Nrf2/Hamp1-/- mice showed increased in vitro clonogenic potential and, upon serial transplantation, recipients disclosed cytopenias, despite normal engraftment, suggesting defective differentiation. Unstimulated karyotype analysis showed increased chromosome instability and aneuploidy in Nrf2/Hamp1-/- BM cells. In HFE-related hemochromatosis patients, NRF2 promoter SNP rs35652124 genotype TT (predicted to decrease NRF2 expression) associated with increased MCV, consistent with erythroid dysplasia. Our results suggest that IOL induces ineffective erythropoiesis and dysplastic hematologic features through oxidative damage in Nrf2-deficient cells.


Asunto(s)
Anemia , Hemocromatosis , Sobrecarga de Hierro , Síndromes Mielodisplásicos , Animales , Humanos , Ratones , Anemia/metabolismo , Eritropoyesis/genética , Hemocromatosis/genética , Hemocromatosis/metabolismo , Sobrecarga de Hierro/genética , Sobrecarga de Hierro/metabolismo , Ratones Noqueados , Síndromes Mielodisplásicos/genética , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo
7.
PLoS Pathog ; 19(10): e1011679, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37812650

RESUMEN

Malaria and iron deficiency are major global health problems with extensive epidemiological overlap. Iron deficiency-induced anaemia can protect the host from malaria by limiting parasite growth. On the other hand, iron deficiency can significantly disrupt immune cell function. However, the impact of host cell iron scarcity beyond anaemia remains elusive in malaria. To address this, we employed a transgenic mouse model carrying a mutation in the transferrin receptor (TfrcY20H/Y20H), which limits the ability of cells to internalise iron from plasma. At homeostasis TfrcY20H/Y20H mice appear healthy and are not anaemic. However, TfrcY20H/Y20H mice infected with Plasmodium chabaudi chabaudi AS showed significantly higher peak parasitaemia and body weight loss. We found that TfrcY20H/Y20H mice displayed a similar trajectory of malaria-induced anaemia as wild-type mice, and elevated circulating iron did not increase peak parasitaemia. Instead, P. chabaudi infected TfrcY20H/Y20H mice had an impaired innate and adaptive immune response, marked by decreased cell proliferation and cytokine production. Moreover, we demonstrated that these immune cell impairments were cell-intrinsic, as ex vivo iron supplementation fully recovered CD4+ T cell and B cell function. Despite the inhibited immune response and increased parasitaemia, TfrcY20H/Y20H mice displayed mitigated liver damage, characterised by decreased parasite sequestration in the liver and an attenuated hepatic immune response. Together, these results show that host cell iron scarcity inhibits the immune response but prevents excessive hepatic tissue damage during malaria infection. These divergent effects shed light on the role of iron in the complex balance between protection and pathology in malaria.


Asunto(s)
Anemia , Deficiencias de Hierro , Malaria , Plasmodium chabaudi , Animales , Ratones , Hierro , Malaria/parasitología , Inmunidad , Plasmodium chabaudi/fisiología
8.
bioRxiv ; 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37808769

RESUMEN

Generation of mature cells from progenitors requires tight coupling of differentiation and metabolism. During erythropoiesis, erythroblasts are required to massively upregulate globin synthesis then clear extraneous material and enucleate to produce erythrocytes1-3. Nprl3 has remained in synteny with the α-globin genes for >500 million years4, and harbours the majority of the α-globin enhancers5. Nprl3 is a highly conserved inhibitor of mTORC1, which controls cellular metabolism. However, whether Nprl3 itself serves an erythroid role is unknown. Here, we show that Nprl3 is a key regulator of erythroid metabolism. Using Nprl3-deficient fetal liver and adult competitive bone marrow - fetal liver chimeras, we show that NprI3 is required for sufficient erythropoiesis. Loss of Nprl3 elevates mTORC1 signalling, suppresses autophagy and disrupts erythroblast glycolysis and redox control. Human CD34+ progenitors lacking NPRL3 produce fewer enucleated cells and demonstrate dysregulated mTORC1 signalling in response to nutrient availability and erythropoietin. Finally, we show that the α-globin enhancers upregulate NprI3 expression, and that this activity is necessary for optimal erythropoiesis. Therefore, the anciently conserved linkage of NprI3, α-globin and their associated enhancers has enabled coupling of metabolic and developmental control in erythroid cells. This may enable erythropoiesis to adapt to fluctuating nutritional and environmental conditions.

9.
PLoS One ; 18(5): e0285606, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37216375

RESUMEN

BACKGROUND: Iron plays a key role in human immune responses; however, the influence of iron deficiency on the coronavirus disease 2019 (COVID-19) vaccine effectiveness is unclear. AIM: To assess the effectiveness of the BNT162b2 messenger RNA COVID-19 vaccine in preventing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and COVID-19-related hospitalization and death in individuals with or without iron deficiency. METHODS: This large retrospective, longitudinal cohort study analyzed real-world data from the Maccabi Healthcare Services database (covering 25% of Israeli residents). Eligible adults (aged ≥16 years) received a first BNT162b2 vaccine dose between December 19, 2020, and February 28, 2021, followed by a second dose as per approved vaccine label. Individuals were excluded if they had SARS-CoV-2 infection before vaccination, had hemoglobinopathy, received a cancer diagnosis since January 2020, had been treated with immunosuppressants, or were pregnant at the time of vaccination. Vaccine effectiveness was assessed in terms of incidence rates of SARS-CoV-2 infection confirmed by real-time polymerase chain reaction assay, relative risks of COVID-19-related hospitalization, and mortality in individuals with iron deficiency (ferritin <30 ng/mL or transferrin saturation <20%). The two-dose protection period was Days 7 to 28 after the second vaccination. RESULTS: Data from 184,171 individuals with (mean [standard deviation; SD] age 46.2 [19.6] years; 81.2% female) versus 1,072,019 without (mean [SD] age 46.9 [18.0] years; 46.2% female) known iron deficiency were analyzed. Vaccine effectiveness in the two-dose protection period was 91.9% (95% confidence interval [CI] 83.7-96.0%) and 92.1% (95% CI 84.2-96.1%) for those with versus without iron deficiency (P = 0.96). Of patients with versus without iron deficiency, hospitalizations occurred in 28 and 19 per 100,000 during the reference period (Days 1-7 after the first dose), and in 19 and 7 per 100,000 during the two-dose protection period, respectively. Mortality rates were comparable between study groups: 2.2 per 100,000 (4/181,012) in the population with iron deficiency and 1.8 per 100,000 (19/1,055,298) in those without known iron deficiency. CONCLUSIONS: Results suggest that the BNT162b2 COVID-19 vaccine is >90% effective in preventing SARS-CoV-2 infection in the 3 weeks after the second vaccination, irrespective of iron-deficiency status. These findings support the use of the vaccine in populations with iron deficiency.


Asunto(s)
COVID-19 , Deficiencias de Hierro , Vacunas , Adulto , Embarazo , Humanos , Femenino , Masculino , Vacunas contra la COVID-19/uso terapéutico , COVID-19/prevención & control , Vacuna BNT162 , Estudios Retrospectivos , Estudios Longitudinales , SARS-CoV-2
10.
Int J Obes (Lond) ; 47(7): 554-563, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37029208

RESUMEN

A bidirectional relationship exists between adipose tissue metabolism and iron regulation. Total body fat, fat distribution and exercise influence iron status and components of the iron-regulatory pathway, including hepcidin and erythroferrone. Conversely, whole body and tissue iron stores associate with fat mass and distribution and glucose and lipid metabolism in adipose tissue, liver, and muscle. Manipulation of the iron-regulatory proteins erythroferrone and erythropoietin affects glucose and lipid metabolism. Several lines of evidence suggest that iron accumulation and metabolism may play a role in the development of metabolic diseases including obesity, type 2 diabetes, hyperlipidaemia and non-alcoholic fatty liver disease. In this review we summarise the current understanding of the relationship between iron homoeostasis and metabolic disease.


Asunto(s)
Diabetes Mellitus Tipo 2 , Glucosa , Humanos , Glucosa/metabolismo , Hierro/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Obesidad/metabolismo , Hígado/metabolismo , Metabolismo de los Lípidos/fisiología
11.
Lancet Glob Health ; 11(1): e105-e116, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36521942

RESUMEN

BACKGROUND: Iron deficiency is the most prevalent nutritional disorder worldwide. Iron supplementation has modest efficacy, causes gastrointestinal side-effects that limit compliance, and has been associated with serious adverse outcomes in children across low-income settings. We aimed to compare two hepcidin-guided screen-and-treat regimens designed to reduce overall iron dosage by targeting its administration to periods when children were safe and ready to receive iron supplementation, with WHO's recommendation of universal iron supplementation. METHODS: We conducted an individually randomised, three-arm, double-blind, controlled, proof-of-concept, non-inferiority trial in 12 rural communities across The Gambia. Eligible participants were children aged 6-23 months with anaemia. Participants were randomly assigned (1:1:1) to either the WHO recommended regimen of one sachet of multiple micronutrient powder (MMP) daily containing 12·0 mg iron as encapsulated ferrous fumarate (control group); to MMP with 12·0 mg per day iron for the next 7 days if plasma hepcidin concentration was less than 5·5 µg/L, or to MMP without iron for the next 7 days if plasma hepcidin concentration was at least 5·5 µg/L (12 mg screen-and-treat group); or to MMP with 6·0 mg per day iron for the next 7 days if plasma hepcidin concentration was less than 5·5 µg/L, or to MMP without iron for the next 7 days if plasma hepcidin concentration was at least 5·5 µg/L (6 mg screen-and-treat group). Randomisation was done by use of a permuted block design (block size of 9), with stratification by haemoglobin and age, using computer-generated numbers. Participants and the research team (except for the data manager) were masked to group allocation. The primary outcome was haemoglobin concentration, with a non-inferiority margin of -5 g/L. A per-protocol analysis, including only children who had consumed at least 90% of the supplements (ie, supplement intake on ≥75 days during the study), was done to assess non-inferiority of the primary outcome at day 84 using a one-sided t test adjusted for multiple comparisons. Safety was assessed by use of ex-vivo growth tests of Plasmodium falciparum in erythrocytes and three species of sentinel bacteria in plasma samples from participants. This trial is registered with the ISRCTN registry, ISRCTN07210906. FINDINGS: Between April 23, 2014, and Aug 7, 2015, we prescreened 783 children, of whom 407 were enrolled into the study: 135 were randomly assigned to the control group, 136 to the 12 mg screen-and-treat group, and 136 to the 6 mg screen-and-treat group. 345 (85%) children were included in the per-protocol population: 115 in the control group, 116 in the 12 mg screen-and-treat group, and 114 in the 6 mg screen-and-treat group. Directly observed adherence was high across all groups (control group 94·8%, 12 mg screen-and-treat group 95·3%, and 6 mg screen-and-treat group 95·0%). 82 days of iron supplementation increased mean haemoglobin concentration by 7·7 g/L (95% CI 3·2 to 12·2) in the control group. Both screen-and-treat regimens were significantly less efficacious at improving haemoglobin (-5·6 g/L [98·3% CI -9·9 to -1·3] in the 12 mg screen-and-treat group and -7·8 g/L [98·3% CI -12·2 to -3·5] in the 6 mg screen-and-treat group) and neither regimen met the preset non-inferiority margin of -5 g/L. The 12 mg screen-and-treat regimen reduced iron dosage to 6·1 mg per day and the 6 mg screen-and-treat regimen reduced dosage to 3·0 mg per day. 580 adverse events were observed in 316 participants, of which eight were serious adverse events requiring hospitalisation mainly due to diarrhoeal disease (one [1%] participant in the control group, three [2%] in the 12 mg screen-and-treat group, and four [3%] in the 6 mg screen-and-treat group). The most common causes of non-serious adverse events (n=572) were diarrhoea (145 events [25%]), upper respiratory tract infections (194 [34%]), lower respiratory tract infections (62 [11%]), and skin infections (122 [21%]). No adverse events were deemed to be related to the study interventions. INTERPRETATION: The hepcidin-guided screen-and-treat strategy to target iron administration succeeded in reducing overall iron dosage, but was considerably less efficacious at increasing haemoglobin and combating iron deficiency and anaemia than was WHO's standard of care, and showed no differences in morbidity or safety outcomes. FUNDING: Bill & Melinda Gates Foundation and UK Medical Research Council.


Asunto(s)
Anemia Ferropénica , Deficiencias de Hierro , Humanos , Niño , Preescolar , Anemia Ferropénica/diagnóstico , Anemia Ferropénica/tratamiento farmacológico , Hepcidinas , Gambia , Hierro/uso terapéutico , Hemoglobinas
12.
Front Nutr ; 9: 927754, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36267902

RESUMEN

Iron deficiency is the most prevalent human micronutrient deficiency, disrupting the physiological development of millions of infants and children. Oral iron supplementation is used to address iron-deficiency anemia and reduce associated stunting but can promote infection risk since restriction of iron availability serves as an innate immune mechanism against invading pathogens. Raised iron availability is associated with an increase in enteric pathogens, especially Enterobacteriaceae species, accompanied by reductions in beneficial bacteria such as Bifidobacteria and lactobacilli and may skew the pattern of gut microbiota development. Since the gut microbiota is the primary driver of immune development, deviations from normal patterns of bacterial succession in early life can have long-term implications for immune functionality. There is a paucity of knowledge regarding how both iron deficiency and luminal iron availability affect gut microbiota development, or the subsequent impact on immunity, which are likely to be contributors to the increased risk of infection. Piglets are naturally iron deficient. This is largely due to their low iron endowments at birth (primarily due to large litter sizes), and their rapid growth combined with the low iron levels in sow milk. Thus, piglets consistently become iron deficient within days of birth which rapidly progresses to anemia in the absence of iron supplementation. Moreover, like humans, pigs are omnivorous and share many characteristics of human gut physiology, microbiota and immunity. In addition, their precocial nature permits early maternal separation, individual housing, and tight control of nutritional intake. Here, we highlight the advantages of piglets as valuable and highly relevant models for human infants in promoting understanding of how early iron status impacts physiological development. We also indicate how piglets offer potential to unravel the complexities of microbiota-immune responses during iron deficiency and in response to iron supplementation, and the link between these and increased risk of infectious disease.

13.
Sci Adv ; 8(40): eabq5384, 2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36197985

RESUMEN

Low plasma iron (hypoferremia) induced by hepcidin is a conserved inflammatory response that protects against infections but inhibits erythropoiesis. How hypoferremia influences leukocytogenesis is unclear. Using proteomic data, we predicted that neutrophil production would be profoundly more iron-demanding than generation of other white blood cell types. Accordingly in mice, hepcidin-mediated hypoferremia substantially reduced numbers of granulocytes but not monocytes, lymphocytes, or dendritic cells. Neutrophil rebound after anti-Gr-1-induced neutropenia was blunted during hypoferremia but was rescued by supplemental iron. Similarly, hypoferremia markedly inhibited pharmacologically stimulated granulopoiesis mediated by granulocyte colony-stimulating factor and inflammation-induced accumulation of neutrophils in the spleen and peritoneal cavity. Furthermore, hypoferremia specifically altered neutrophil effector functions, suppressing antibacterial mechanisms but enhancing mitochondrial reactive oxygen species-dependent NETosis associated with chronic inflammation. Notably, antagonizing endogenous hepcidin during acute inflammation enhanced production of neutrophils. We propose plasma iron modulates the profile of innate immunity by controlling monocyte-to-neutrophil ratio and neutrophil activity in a therapeutically targetable system.

14.
Wellcome Open Res ; 7: 173, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35935705

RESUMEN

Background: Marked reductions in serum iron concentrations are commonly induced during the acute phase of infection. This phenomenon, termed hypoferremia of inflammation, leads to inflammatory anemia, but could also have broader pathophysiological implications. In patients with coronavirus disease 2019 (COVID-19), hypoferremia is associated with disease severity and poorer outcomes, although there are few reported cohorts. Methods: In this study, we leverage a well characterised prospective cohort of hospitalised COVID-19 patients and perform a set of analyses focussing on iron and related biomarkers and both acute severity of COVID-19 and longer-term symptomatology. Results: We observed no associations between acute serum iron and long-term outcomes (including fatigue, breathlessness or quality of life); however, lower haemoglobin was associated with poorer quality of life. We also quantified iron homeostasis associated parameters, demonstrating that among 50 circulating mediators of inflammation IL-6 concentrations were strongly associated with serum iron, consistent with its central role in inflammatory control of iron homeostasis. Surprisingly, we observed no association between serum hepcidin and serum iron concentrations. We also observed elevated erythroferrone concentrations in COVID-19 patients with anaemia of inflammation. Conclusions: These results enhance our understanding of the regulation and pathophysiological consequences of disturbed iron homeostasis during SARS-CoV-2 infection.

15.
Commun Biol ; 5(1): 111, 2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-35121793

RESUMEN

Salmonella enterica represent a major disease burden worldwide. S. enterica serovar Typhi (S. Typhi) is responsible for potentially life-threatening Typhoid fever affecting 10.9 million people annually. While non-typhoidal Salmonella (NTS) serovars usually trigger self-limiting diarrhoea, invasive NTS bacteraemia is a growing public health challenge. Dendritic cells (DCs) are key professional antigen presenting cells of the human immune system. The ability of pathogenic bacteria to subvert DC functions and prevent T cell recognition contributes to their survival and dissemination within the host. Here, we adapted dual RNA-sequencing to define how different Salmonella pathovariants remodel their gene expression in tandem with that of infected DCs. We find DCs harness iron handling pathways to defend against invading Salmonellas, which S. Typhi is able to circumvent by mounting a robust response to nitrosative stress. In parallel, we uncover the alternative strategies invasive NTS employ to impair DC functions.


Asunto(s)
Reprogramación Celular/fisiología , Células Dendríticas/metabolismo , Salmonella enterica/clasificación , Células Dendríticas/inmunología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Mutación
16.
Br J Anaesth ; 128(2): 272-282, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34872717

RESUMEN

BACKGROUND: Anaemia is common and associated with poor outcomes in survivors of critical illness. However, the optimal treatment strategy is unclear. METHODS: We conducted a multicentre, feasibility RCT to compare either a single dose of ferric carboxymaltose 1000 mg i.v. or usual care in patients being discharged from the ICU with moderate or severe anaemia (haemoglobin ≤100 g L-1). We collected data on feasibility (recruitment, randomisation, follow-up), biological efficacy, and clinical outcomes. RESULTS: Ninety-eight participants were randomly allocated (49 in each arm). The overall recruitment rate was 34% with 6.5 participants recruited on average per month. Forty-seven of 49 (96%) participants received the intervention. Patient-reported outcome measures were available for 79/93 (85%) survivors at 90 days. Intravenous iron resulted in a higher mean (standard deviation [sd]) haemoglobin at 28 days (119.8 [13.3] vs 106.7 [14.9] g L-1) and 90 days (130.5 [15.1] vs 122.7 [17.3] g L-1), adjusted mean difference (10.98 g L-1; 95% confidence interval [CI], 4.96-17.01; P<0.001) over 90 days after randomisation. Infection rates were similar in both groups. Hospital readmissions at 90 days post-ICU discharge were lower in the i.v. iron group (7/40 vs 15/39; risk ratio=0.46; 95% CI, 0.21-0.99; P=0.037). The median (inter-quartile range) post-ICU hospital stay was shorter in the i.v. iron group but did not reach statistical significance (5.0 [3.0-13.0] vs 9.0 [5.0-16.0] days, P=0.15). CONCLUSION: A large, multicentre RCT of i.v. iron to treat anaemia in survivors of critical illness appears feasible and is necessary to determine the effects on patient-centred outcomes. CLINICAL TRIAL REGISTRATION: ISRCTN13721808 (www.isrctn.com).


Asunto(s)
Anemia/tratamiento farmacológico , Compuestos Férricos/administración & dosificación , Hematínicos/administración & dosificación , Maltosa/análogos & derivados , Administración Intravenosa , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Cuidados Críticos , Estudios de Factibilidad , Femenino , Estudios de Seguimiento , Hemoglobinas/análisis , Humanos , Tiempo de Internación , Masculino , Maltosa/administración & dosificación , Persona de Mediana Edad , Readmisión del Paciente/estadística & datos numéricos , Medición de Resultados Informados por el Paciente , Adulto Joven
17.
Wellcome Open Res ; 7: 267, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37065726

RESUMEN

Background: Niemann-Pick disease type C1 (NPC1) is a neurodegenerative lysosomal storage disorder characterized by the accumulation of multiple lipids in the late endosome/lysosomal system and reduced acidic store calcium. The lysosomal system regulates key aspects of iron homeostasis, which prompted us to investigate whether there are hematological abnormalities and iron metabolism defects in NPC1. Methods: Iron-related hematological parameters, systemic and tissue metal ion and relevant hormonal and proteins levels, expression of specific pro-inflammatory mediators and erythrophagocytosis were evaluated in an authentic mouse model and in a large cohort of NPC patients. Results: Significant changes in mean corpuscular volume and corpuscular hemoglobin were detected in Npc1 -/- mice from an early age. Hematocrit, red cell distribution width and hemoglobin changes were observed in late-stage disease animals. Systemic iron deficiency, increased circulating hepcidin, decreased ferritin and abnormal pro-inflammatory cytokine levels were also found. Furthermore, there is evidence of defective erythrophagocytosis in Npc1 -/- mice and in an in vitro NPC1 cellular model. Comparable hematological changes, including low normal serum iron and transferrin saturation and low cerebrospinal fluid ferritin were confirmed in NPC1 patients. Conclusions: These data suggest loss of iron homeostasis and hematological abnormalities in NPC1 may contribute to the pathophysiology of this disease.

18.
Front Immunol ; 12: 714613, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34880854

RESUMEN

Recent findings have shown that iron is a powerful regulator of immune responses, which is of broad importance because iron deficiency is highly prevalent worldwide. However, the underlying reasons of why iron is needed by lymphocytes remain unclear. Using a combination of mathematical modelling, bioinformatic analysis and experimental work, we studied how iron influences T-cells. We identified iron-interacting proteins in CD4+ and CD8+ T-cell proteomes that were differentially expressed during activation, suggesting that pathways enriched with such proteins, including histone demethylation, may be impaired by iron deficiency. Consistent with this, iron-starved Th17 cells showed elevated expression of the repressive histone mark H3K27me3 and displayed reduced RORγt and IL-17a, highlighting a previously unappreciated role for iron in T-cell differentiation. Quantitatively, we estimated T-cell iron content and calculated that T-cell iron demand rapidly and substantially increases after activation. We modelled that these increased requirements will not be met during clinically defined iron deficiency, indicating that normalizing serum iron may benefit adaptive immunity. Conversely, modelling predicted that excess serum iron would not enhance CD8+ T-cell responses, which we confirmed by immunising inducible hepcidin knock-out mice that have very high serum iron concentrations. Therefore, iron deficiency impairs multiple aspects of T-cell responses, while iron overload likely has milder effects.


Asunto(s)
Proteínas de Unión a Hierro/metabolismo , Hierro/metabolismo , Activación de Linfocitos/fisiología , Subgrupos de Linfocitos T/inmunología , Animales , Células Cultivadas , Conjuntos de Datos como Asunto , Epigénesis Genética , Ontología de Genes , Hemo/metabolismo , Hepcidinas/deficiencia , Hepcidinas/inmunología , Humanos , Deficiencias de Hierro/inmunología , Sobrecarga de Hierro/inmunología , Linfopoyesis , Ratones , Ratones Noqueados , Modelos Biológicos , Proteoma , Subgrupos de Linfocitos T/metabolismo , Células Th17/efectos de los fármacos , Células Th17/metabolismo
19.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34873026

RESUMEN

Iron is an irreplaceable component of proteins and enzyme systems required for life. This need for iron is a well-characterized evolutionary mechanism for genetic selection. However, there is limited consideration of how iron bioavailability, initially determined by planetary accretion but fluctuating considerably at global scale over geological time frames, has shaped the biosphere. We describe influences of iron on planetary habitability from formation events >4 Gya and initiation of biochemistry from geochemistry through oxygenation of the atmosphere to current host-pathogen dynamics. By determining the iron and transition element distribution within the terrestrial planets, planetary core formation is a constraint on both the crustal composition and the longevity of surface water, hence a planet's habitability. As such, stellar compositions, combined with metallic core-mass fraction, may be an observable characteristic of exoplanets that relates to their ability to support life. On Earth, the stepwise rise of atmospheric oxygen effectively removed gigatons of soluble ferrous iron from habitats, generating evolutionary pressures. Phagocytic, infectious, and symbiotic behaviors, dating from around the Great Oxygenation Event, refocused iron acquisition onto biotic sources, while eukaryotic multicellularity allows iron recycling within an organism. These developments allow life to more efficiently utilize a scarce but vital nutrient. Initiation of terrestrial life benefitted from the biochemical properties of abundant mantle/crustal iron, but the subsequent loss of iron bioavailability may have been an equally important driver of compensatory diversity. This latter concept may have relevance for the predicted future increase in iron deficiency across the food chain caused by elevated atmospheric CO2.


Asunto(s)
Evolución Biológica , Evolución Planetaria , Hierro/metabolismo , Disponibilidad Biológica , Planeta Tierra , Ecosistema , Variación Genética , Geología , Interacciones Huésped-Patógeno , Hierro/química , Oxidación-Reducción , Sideróforos/metabolismo , Agua/química , Agua/metabolismo
20.
Blood ; 138(15): 1285-1287, 2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34647984

Asunto(s)
Hierro
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...