Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nature ; 597(7875): 225-229, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34497393

RESUMEN

In the past several decades, field studies have shown that woody plants can access substantial volumes of water from the pores and fractures of bedrock1-3. If, like soil moisture, bedrock water storage serves as an important source of plant-available water, then conceptual paradigms regarding water and carbon cycling may need to be revised to incorporate bedrock properties and processes4-6. Here we present a lower-bound estimate of the contribution of bedrock water storage to transpiration across the continental United States using distributed, publicly available datasets. Temporal and spatial patterns of bedrock water use across the continental United States indicate that woody plants extensively access bedrock water for transpiration. Plants across diverse climates and biomes access bedrock water routinely and not just during extreme drought conditions. On an annual basis in California, the volumes of bedrock water transpiration exceed the volumes of water stored in human-made reservoirs, and woody vegetation that accesses bedrock water accounts for over 50% of the aboveground carbon stocks in the state. Our findings indicate that plants commonly access rock moisture, as opposed to groundwater, from bedrock and that, like soil moisture, rock moisture is a critical component of terrestrial water and carbon cycling.


Asunto(s)
Mapeo Geográfico , Agua Subterránea , Transpiración de Plantas , Plantas/metabolismo , Análisis Espacio-Temporal , Recursos Hídricos/provisión & distribución , Madera , California , Ciclo del Carbono , Sequías , Sedimentos Geológicos/química , Raíces de Plantas/metabolismo , Texas , Estados Unidos
2.
Proc Natl Acad Sci U S A ; 117(4): 1935-1940, 2020 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-31932433

RESUMEN

A growing empirical literature associates climate anomalies with increased risk of violent conflict. This association has been portrayed as a bellwether of future societal instability as the frequency and intensity of extreme weather events are predicted to increase. This paper investigates the theoretical foundation of this claim. A seminal microeconomic model of opportunity costs-a mechanism often thought to drive climate-conflict relationships-is extended by considering realistic changes in the distribution of climate-dependent agricultural income. Results advise caution in using empirical associations between short-run climate anomalies and conflicts to predict the effect of sustained shifts in climate regimes: Although war occurs in bad years, conflict may decrease if agents expect more frequent bad years. Theory suggests a nonmonotonic relation between climate variability and conflict that emerges as agents adapt and adjust their behavior to the new income distribution. We identify 3 measurable statistics of the income distribution that are each unambiguously associated with conflict likelihood. Jointly, these statistics offer a unique signature to distinguish opportunity costs from competing mechanisms that may relate climate anomalies to conflict.


Asunto(s)
Conflictos Armados/economía , Cambio Climático , Productos Agrícolas/crecimiento & desarrollo , Desarrollo Económico/estadística & datos numéricos , Modelos Teóricos , Violencia/economía , Humanos , Factores de Riesgo , Abastecimiento de Agua/estadística & datos numéricos
3.
Bioscience ; 65(8): 822-829, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26955083

RESUMEN

The liberalization of marijuana policies, including the legalization of medical and recreational marijuana, is sweeping the United States and other countries. Marijuana cultivation can have significant negative collateral effects on the environment that are often unknown or overlooked. Focusing on the state of California, where by some estimates 60%-70% of the marijuana consumed in the United States is grown, we argue that (a) the environmental harm caused by marijuana cultivation merits a direct policy response, (b) current approaches to governing the environmental effects are inadequate, and

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...