RESUMEN
Astrocytes play an essential role in regulating synaptic transmission. This study describes a novel form of modulation of excitatory synaptic transmission in the mouse hippocampus by astrocytic G-protein-coupled receptors (GPCRs). We have previously described astrocytic glutamate release via protease-activated receptor-1 (PAR1) activation, although the regulatory mechanisms for this are complex. Through electrophysiological analysis and modeling, we discovered that PAR1 activation consistently increases the concentration and duration of glutamate in the synaptic cleft. This effect was not due to changes in the presynaptic glutamate release or alteration in glutamate transporter expression. However, blocking group II metabotropic glutamate receptors (mGluR2/3) abolished PAR1-mediated regulation of synaptic glutamate concentration, suggesting a role for this GPCR in mediating the effects of PAR1 activation on glutamate release. Furthermore, activation of mGluR2/3 causes glutamate release through the TREK-1 channel in hippocampal astrocytes. These data show that astrocytic GPCRs engage in a novel regulatory mechanism to shape the time course of synaptically-released glutamate in excitatory synapses of the hippocampus.
Asunto(s)
Astrocitos , Región CA1 Hipocampal , Ácido Glutámico , Ratones Endogámicos C57BL , Receptor PAR-1 , Receptores de Glutamato Metabotrópico , Sinapsis , Animales , Receptores de Glutamato Metabotrópico/metabolismo , Astrocitos/metabolismo , Ácido Glutámico/metabolismo , Sinapsis/metabolismo , Región CA1 Hipocampal/metabolismo , Receptor PAR-1/metabolismo , Ratones , Potenciales Postsinápticos Excitadores/fisiología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Masculino , Transmisión Sináptica/fisiología , Transmisión Sináptica/efectos de los fármacos , Canales de Potasio de Dominio Poro en Tándem/metabolismoRESUMEN
Our previous findings demonstrated that astrocytic HIF-1α plays a major role in HIV-1 Tat-mediated amyloidosis which can lead to Alzheimer's-like pathology-a comorbidity of HIV-Associated Neurocognitive Disorders (HAND). These amyloids can be shuttled in extracellular vesicles, and we sought to assess whether HIV-1 Tat stimulated astrocyte-derived EVs (ADEVs) containing the toxic amyloids could result in neuronal injury in vitro and in vivo. We thus hypothesized that blocking HIF-1α could likely mitigate HIV-1 Tat-ADEV-mediated neuronal injury. Rat hippocampal neurons when exposed to HIV-1 Tat-ADEVs carrying the toxic amyloids exhibited amyloid accumulation and synaptodendritic injury, leading to functional loss as evidenced by alterations in miniature excitatory post synaptic currents. The silencing of astrocytic HIF-1α not only reduced the biogenesis of ADEVs, as well as amyloid cargos, but also ameliorated neuronal synaptodegeneration. Next, we determined the effect of HIV-1 Tat-ADEVs carrying amyloids in the hippocampus of naive mice brains. Naive mice receiving the HIV-1 Tat-ADEVs, exhibited behavioural changes, and Alzheimer's 's-like pathology accompanied by synaptodegeneration. This impairment(s) was not observed in mice injected with HIF-1α silenced ADEVs. This is the first report demonstrating the role of amyloid-carrying ADEVs in mediating synaptodegeneration leading to behavioural changes associated with HAND and highlights the protective role of HIF-1α.
Asunto(s)
Astrocitos , Vesículas Extracelulares , VIH-1 , Hipocampo , Subunidad alfa del Factor 1 Inducible por Hipoxia , Neuronas , Vesículas Extracelulares/metabolismo , Animales , Astrocitos/metabolismo , Ratones , Ratas , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , VIH-1/metabolismo , Hipocampo/metabolismo , Neuronas/metabolismo , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo , Humanos , Trastornos Neurocognitivos/metabolismo , Trastornos Neurocognitivos/etiología , Infecciones por VIH/metabolismo , Infecciones por VIH/complicaciones , Masculino , Complejo SIDA Demencia/metabolismoRESUMEN
BACKGROUND AND PURPOSE: Chronic pain remains a major clinical problem that needs effective therapeutic agents. Glutamate delta 1 (GluD1) receptors and the protein cerebellin 1 (Cbln1) are down-regulated in the central amygdala (CeA) in models of inflammatory and neuropathic pain. One treatment with Cbln1, intracerebroventricularly (ICV) or in CeA, normalized GluD1 and reduced AMPA receptor expression, resulting in lasting (7-10 days) pain relief. Unlike many CNS-targeting biological agents, the structure of Cbln1 suggests potential blood-brain barrier penetration. Here, we have tested whether systemic administration of Cbln1 provides analgesic effects via action in the CNS. EXPERIMENTAL APPROACH: Analgesic effects of intravenous recombinant Cbln1 was assessed in complete Freund's adjuvant inflammatory pain model in mice. GluD1 knockout and a mutant form of Cbln1 were used. KEY RESULTS: A single intravenous injection of Cbln1 mitigated nocifensive and averse behaviour in both inflammatory and neuropathic pain models. This effect of Cbln1 was dependent on GluD1 receptors and required binding to the amino terminal domain of GluD1. Time course of analgesic effect was similar to previously reported ICV and intra-CeA injection. GluD1 in both spinal cord and CeA was down -regulated in the inflammatory pain model, whereas GluD1 expression in spinal cord but not in CeA, was partly normalized by intravenous Cbln1. Importantly, recombinant Cbln1 was detected in the synaptoneurosomes in spinal cord but not in the CeA. CONCLUSIONS AND IMPLICATIONS: Our results describe a novel mechanism by which systemic Cbln1 induces analgesia potentially by central actions involving normalization of signalling by spinal cord GluD1 receptors.
Asunto(s)
Dolor Crónico , Proteínas del Tejido Nervioso , Neuralgia , Ratones , Animales , Dolor Crónico/tratamiento farmacológico , Ácido Glutámico , Receptores de Glutamato , Neuralgia/tratamiento farmacológico , Analgésicos/uso terapéuticoRESUMEN
In this study, we investigated the role of glutamate delta 1 receptor (GluD1) in oligodendrocyte progenitor cell (OPC)-mediated myelination during basal (development) and pathophysiological (cuprizone-induced demyelination) conditions. Initially, we sought to determine the expression pattern of GluD1 in OPCs and found a significant colocalization of GluD1 puncta with neuron-glial antigen 2 (NG2, OPC marker) in the motor cortex and dorsal striatum. Importantly, we found that the ablation of GluD1 led to an increase in the number of myelin-associated glycoprotein (MAG+) cells in the corpus callosum and motor cortex at P40 without affecting the number of NG2+ OPCs, suggesting that GluD1 loss selectively facilitates OPC differentiation rather than proliferation. Further, deletion of GluD1 enhanced myelination in the corpus callosum and motor cortex, as indicated by increased myelin basic protein (MBP) staining at P40, suggesting that GluD1 may play an essential role in the developmental regulation of myelination during the critical window period. In contrast, in cuprizone-induced demyelination, we observed reduced MBP staining in the corpus callosum of GluD1 KO mice. Furthermore, cuprizone-fed GluD1 KO mice showed more robust motor deficits. Collectively, our results demonstrate that GluD1 plays a critical role in OPC regulation and myelination in normal and demyelinating conditions.
Asunto(s)
Enfermedades Desmielinizantes , Células Precursoras de Oligodendrocitos , Ratones , Animales , Vaina de Mielina/metabolismo , Células Precursoras de Oligodendrocitos/metabolismo , Cuprizona , Ácido Glutámico/metabolismo , Ratones Noqueados , Oligodendroglía/metabolismo , Diferenciación Celular/fisiología , Cuerpo Calloso/metabolismo , Receptores de Glutamato/metabolismo , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/metabolismo , Ratones Endogámicos C57BLRESUMEN
BACKGROUND: Parvalbumin interneuron (PVI) activity synchronizes the medial prefrontal cortex circuit for normal cognitive function, and its impairment may contribute to schizophrenia (SZ). NMDA receptors in PVIs participate in these activities and form the basis for the NMDA receptor hypofunction hypothesis of SZ. However, the role of the GluN2D subunit, which is enriched in PVIs, in regulating molecular networks relevant to SZ is unknown. METHODS: Using electrophysiology and a mouse model with conditional deletion of GluN2D from PVIs (PV-GluN2D knockout [KO]), we examined the cell excitability and neurotransmission in the medial prefrontal cortex. Histochemical, RNA sequencing analysis and immunoblotting were conducted to understand molecular mechanisms. Behavioral analysis was conducted to test cognitive function. RESULTS: PVIs in the medial prefrontal cortex were found to express putative GluN1/2B/2D receptors. In a PV-GluN2D KO model, PVIs were hypoexcitable, whereas pyramidal neurons were hyperexcitable. Excitatory neurotransmission was higher in both cell types in PV-GluN2D KO, whereas inhibitory neurotransmission showed contrasting changes, which could be explained by reduced somatostatin interneuron projections and increased PVI projections. Genes associated with GABA (gamma-aminobutyric acid) synthesis, vesicular release, and uptake as well as those involved in formation of inhibitory synapses, specifically GluD1-Cbln4 and Nlgn2, and regulation of dopamine terminals were downregulated in PV-GluN2D KO. SZ susceptibility genes including Disc1, Nrg1, and ErbB4 and their downstream targets were also downregulated. Behaviorally, PV-GluN2D KO mice showed hyperactivity and anxiety behavior and deficits in short-term memory and cognitive flexibility. CONCLUSIONS: These findings demonstrate that GluN2D in PVIs serves as a point of convergence of pathways involved in the regulation of GABAergic synapses relevant to SZ.
Asunto(s)
Parvalbúminas , Esquizofrenia , Animales , Ratones , Interneuronas/fisiología , Ratones Noqueados , Proteínas del Tejido Nervioso/metabolismo , Parvalbúminas/metabolismo , Corteza Prefrontal/metabolismo , Receptor ErbB-4/metabolismo , Esquizofrenia/genética , Esquizofrenia/metabolismoRESUMEN
Thalamic regulation of cortical function is important for several behavioral aspects including attention and sensorimotor control. This region has also been studied for its involvement in seizure activity. Among the NMDA receptor subunits GluN2C and GluN2D are particularly enriched in several thalamic nuclei including nucleus reticularis of the thalamus (nRT). We have previously found that GluN2C deletion does not have a strong influence on the basal excitability and burst firing characteristics of reticular thalamus neurons. Here we find that GluN2D ablation leads to reduced depolarization-induced spike frequency and reduced hyperpolarization-induced rebound burst firing in nRT neurons. Furthermore, reduced inhibitory neurotransmission was observed in the ventrobasal thalamus (VB). A model with preferential downregulation of GluN2D from parvalbumin (PV)-positive neurons was generated. Conditional deletion of GluN2D from PV neurons led to a decrease in excitability and burst firing. In addition, reduced excitability and burst firing was observed in the VB neurons together with reduced inhibitory neurotransmission. Finally, young mice with GluN2D downregulation in PV neurons showed significant resistance to pentylenetetrazol-induced seizure and differences in sensitivity to isoflurane anesthesia but were normal in other behaviors. Conditional deletion of GluN2D from PV neurons also affected expression of other GluN2 subunits and GABA receptor in the nRT. Together, these results identify a unique role of GluN2D-containing receptors in the regulation of thalamic circuitry and seizure susceptibility which is relevant to mutations in GRIN2D gene found to be associated with pediatric epilepsy.
Asunto(s)
Receptores de N-Metil-D-Aspartato , Tálamo , Animales , Ratones , Neuronas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Convulsiones/metabolismo , Transmisión Sináptica , Núcleos Talámicos/metabolismo , Tálamo/metabolismoRESUMEN
N-methyl-D-aspartate (NMDA) receptors play a critical role in activity-dependent dendritic arborization, spinogenesis, and synapse formation by stimulating calcium-dependent signaling pathways. Previously, we have shown that brevetoxin 2 (PbTx-2), a voltage-gated sodium channel (VGSC) activator, produces a concentration-dependent increase in intracellular sodium [Na+]I and increases NMDA receptor (NMDAR) open probabilities and NMDA-induced calcium (Ca2+) influxes. The objective of this study is to elucidate the downstream signaling mechanisms by which the sodium channel activator PbTx-2 influences neuronal morphology in murine cerebrocortical neurons. PbTx-2 and NMDA triggered distinct Ca2+-influx pathways, both of which involved the NMDA receptor 2B (GluN2B). PbTx-2-induced neurite outgrowth in day in vitro 1 (DIV-1) neurons required the small Rho GTPase Rac1 and was inhibited by both a PAK1 inhibitor and a PAK1 siRNA. PbTx-2 exposure increased the phosphorylation of PAK1 at Thr-212. At DIV-5, PbTx-2 induced increases in dendritic protrusion density, p-cofilin levels, and F-actin throughout the dendritic arbor and soma. Moreover, PbTx-2 increased miniature excitatory post-synaptic currents (mEPSCs). These data suggest that the stimulation of neurite outgrowth, spinogenesis, and synapse formation produced by PbTx-2 are mediated by GluN2B and PAK1 signaling.
Asunto(s)
Neuronas , Receptores de N-Metil-D-Aspartato , Quinasas p21 Activadas , Factores Despolimerizantes de la Actina/metabolismo , Actinas/metabolismo , Animales , Calcio/metabolismo , Toxinas Marinas , Ratones , N-Metilaspartato , Proyección Neuronal , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Oxocinas , ARN Interferente Pequeño/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sodio/metabolismo , Agonistas de los Canales de Sodio/metabolismo , Canales de Sodio Activados por Voltaje/metabolismo , Quinasas p21 Activadas/metabolismo , Proteínas de Unión al GTP rho/metabolismoRESUMEN
Cocaine-associated memories induce cravings and interfere with the ability of users to cease cocaine use. Reducing the strength of cue-drug memories by facilitating extinction may have therapeutic value for the treatment of cocaine addiction. Here, we demonstrate the expression of GluN1/2A/2C NMDA receptor currents in astrocytes in the nucleus accumbens core. Selective ablation of GluN1 subunit from astrocytes in the nucleus accumbens enhanced extinction of cocaine preference memory but did not affect cocaine conditioning or reinstatement. Repeated cocaine exposure up-regulated GluN2C subunit expression and increased astrocytic NMDA receptor currents. Furthermore, intra-accumbal inhibition of GluN2C/2D-containing receptors and GluN2C subunit deletion facilitated extinction of cocaine memory. Cocaine-induced neuroadaptations including dendritic spine maturation and AMPA receptor recruitment were absent in GluN2C knockout mice. Impaired retention of cocaine preference memory in GluN2C knockout mice was restored by exogenous administration of recombinant glypican 4. Together, these results identify a previously unknown astrocytic GluN2C-containing NMDA receptor mechanism underlying maintenance of cocaine preference memory.
RESUMEN
The glutamate delta family of receptors is composed of GluD1 and GluD2 and serve as synaptic organizers. We have previously demonstrated several autism-like molecular and behavioral phenotypes including an increase in dendritic spines in GluD1 knockout mice. Based on previous reports we evaluated whether disruption of autophagy mechanisms may account for these phenotypes. Mouse model with conditional deletion of GluD1 from excitatory neurons in the corticolimbic regions was utilized. GluD1 loss led to overactive Akt-mTOR pathway, higher p62 and a lower LC3-II/LC3-I ratio in the somatosensory cortex suggesting reduced autophagy. Excitatory elements were increased in number but had immature phenotype based on puncta size, lower AMPA subunit GluA1 expression and impaired development switch from predominantly GluN2B to mixed GluN2A/GluN2B subunit expression. Overactive Akt-mTOR signaling and impaired autophagy was also observed in dorsal striatum upon conditional ablation of GluD1 and in the prefrontal cortex and hippocampus in constitutive knockout. Finally, cognitive deficits in novel object recognition test and fear conditioning were observed in mice with conditional ablation of GluD1 from the corticolimbic regions. Together, these results demonstrate a novel function of GluD1 in the regulation of autophagy pathway which may underlie autism phenotypes and is relevant to the genetic association of GluD1 coding, GRID1 gene with autism and other developmental disorders.
Asunto(s)
Ácido Glutámico , Receptores de Glutamato , Corteza Somatosensorial , Animales , Autofagia , Ratones , Ratones Noqueados , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Glutamato/genética , Receptores de Glutamato/metabolismo , Corteza Somatosensorial/metabolismo , Sinapsis/fisiología , Serina-Treonina Quinasas TOR/metabolismoRESUMEN
Aim: Activation of microglial NLRP3 inflammasome is an essential contributor to neuroinflammation underlying HIV-associated neurological disorders (HAND). Under pathological conditions, microglia-derived-EVs (MDEVs) can affect neuronal functions by delivering neurotoxic mediators to recipient cells. However, the role of microglial NLRP3 in mediating neuronal synaptodendritic injury has remained unexplored to date. In the present study, we sought to assess the regulatory role of HIV-1 Tat induced microglial NLRP3 in neuronal synaptodendritic injury. We hypothesized that HIV-1 Tat mediated microglia EVs carrying significant levels of NLRP3 contribute to the synaptodendritic injury, thereby affecting the maturation of neurons. Methods: To understand the cross-talk between microglia and neuron, we isolated EVs from BV2 and human primary microglia (HPM) cells with or without NLRP3 depletion using siNLRP3 RNA. EVs were isolated by differential centrifugation, characterized by ZetaView nanoparticle tracking analysis, electron microscopy, and western blot analysis for exosome markers. Purified EVs were exposed to primary rat neurons isolated from E18 rats. Along with green fluorescent protein (GFP) plasmid transfection, immunocytochemistry was performed to visualize neuronal synaptodendritic injury. Western blotting was employed to measure siRNA transfection efficiency and the extent of neuronal synaptodegeneration. Images were captured in confocal microscopy, and subsequently, Sholl analysis was performed for analyzing dendritic spines using neuronal reconstruction software Neurolucida 360. Electrophysiology was performed on hippocampal neurons for functional assessment. Results: Our findings demonstrated that HIV-1 Tat induced expression of microglial NLRP3 and IL1ß, and further that these were packaged in microglial exosomes (MDEV) and were also taken up by the neurons. Exposure of rat primary neurons to microglial Tat-MDEVs resulted in downregulation of synaptic proteins- PSD95, synaptophysin, excitatory vGLUT1, as well as upregulation of inhibitory proteins- Gephyrin, GAD65, thereby implicating impaired neuronal transmissibility. Our findings also showed that Tat-MDEVs not only caused loss of dendritic spines but also affected numbers of spine sub-types- mushroom and stubby. Synaptodendritic injury further affected functional impairment as evidenced by the decrease in miniature excitatory postsynaptic currents (mEPSCs). To assess the regulatory role of NLRP3 in this process, neurons were also exposed to Tat-MDEVs from NLRP3 silenced microglia. Tat-MDEVs from NLRP3 silenced microglia exerted a protective role on neuronal synaptic proteins, spine density as well as mEPSCs. Conclusion: In summary, our study underscores the role of microglial NLRP3 as an important contributor to Tat-MDEV mediated synaptodendritic injury. While the role of NLRP3 in inflammation is well-described, its role in EV-mediated neuronal damage is an interesting finding, implicating it as a target for therapeutics in HAND.
RESUMEN
N-methyl-d-aspartate (NMDA) receptors (NMDARs) are a subtype of ionotropic glutamate receptor with important roles in CNS function. Since excessive NMDAR activity can lead to neuronal cell death and epilepsy, there is interest in developing NMDAR negative allosteric modulators (NAMs) as neuroprotective agents. In this study, we characterize the inhibitory properties of a novel NMDAR antagonist, UBP792. This compound displays partial subtype-selectivity by having a varied maximal inhibition of GluN2A-, GluN2B-, GluN2C-, and GluN2D-containing receptors (52%, 70%, 87%, 89%, respectively) with IC50s 4-10 µM. UBP792 inhibited NMDAR responses by reducing l-glutamate and glycine potencies and efficacies. Consistent with non-competitive inhibition, increasing agonist concentrations 30-fold did not reduce UBP792 potency. UBP792 inhibition was also not competitive with the structurally-related positive allosteric modulator (PAM) UBP684. UBP792 activity was voltage-independent, unaffected by GluN1's exon-5, and reduced at low pH (except for GluN1/GluN2A receptors which were more sensitive at acidic pH). UBP792 binding appeared independent of agonist binding and may be entering the plasma membrane to gain access to its binding site. Inhibition by UBP792 is reduced when the ligand-binding domain (LBD) of the GluN2 subunit, but not that of the GluN1 subunit, is cross-linked in the closed-cleft, activated conformation. Thus, UBP792 may be inhibiting by stabilizing an open GluN2-LBD cleft associated with channel inactivation or by stabilizing downstream closed channel conformations allosterically-coupled to the GluN2-LBD. These findings further expand the repertoire displayed by NMDAR NAMs thus expanding the opportunities for developing NMDAR modulators with the most appropriate selectivity and physiological actions for specific therapeutic indications.
Asunto(s)
Ácidos Carboxílicos , Naftalenos , Fármacos Neuroprotectores , Receptores de N-Metil-D-Aspartato , Animales , Regulación Alostérica , Sitios de Unión , Ácidos Carboxílicos/química , Ácidos Carboxílicos/farmacología , Relación Dosis-Respuesta a Droga , Ácido Glutámico/metabolismo , Glicina , Naftalenos/química , Naftalenos/farmacología , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/farmacología , Oocitos , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/metabolismo , XenopusRESUMEN
Chronic pain is a debilitating condition involving neuronal dysfunction, but the synaptic mechanisms underlying the persistence of pain are still poorly understood. We found that the synaptic organizer glutamate delta 1 receptor (GluD1) is expressed postsynaptically at parabrachio-central laterocapsular amygdala (PB-CeLC) glutamatergic synapses at axo-somatic and punctate locations on protein kinase C δ -positive (PKCδ+) neurons. Deletion of GluD1 impairs excitatory neurotransmission at the PB-CeLC synapses. In inflammatory and neuropathic pain models, GluD1 and its partner cerebellin 1 (Cbln1) are downregulated while AMPA receptor is upregulated. A single infusion of recombinant Cbln1 into the central amygdala led to sustained mitigation of behavioral pain parameters and normalized hyperexcitability of central amygdala neurons. Cbln2 was ineffective under these conditions and the effect of Cbln1 was antagonized by GluD1 ligand D-serine. The behavioral effect of Cbln1 was GluD1-dependent and showed lateralization to the right central amygdala. Selective ablation of GluD1 from the central amygdala or injection of Cbln1 into the central amygdala in normal animals led to changes in averse and fear-learning behaviors. Thus, GluD1-Cbln1 signaling in the central amygdala is a teaching signal for aversive behavior but its sustained dysregulation underlies persistence of pain. Significance statement: Chronic pain is a debilitating condition which involves synaptic dysfunction, but the underlying mechanisms are not fully understood. Our studies identify a novel mechanism involving structural synaptic changes in the amygdala caused by impaired GluD1-Cbln1 signaling in inflammatory and neuropathic pain behaviors. We also identify a novel means to mitigate pain in these conditions using protein therapeutics.
Asunto(s)
Núcleo Amigdalino Central/metabolismo , Dolor Crónico/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptores de Glutamato/metabolismo , Transducción de Señal , Sinapsis/metabolismo , Animales , Conducta Animal , Dolor Crónico/complicaciones , Dolor Crónico/fisiopatología , Modelos Animales de Enfermedad , Regulación hacia Abajo , Femenino , Inflamación/complicaciones , Inflamación/patología , Masculino , Ratones Noqueados , Nocicepción/efectos de los fármacos , Ratas , Proteínas Recombinantes/farmacología , Transmisión SinápticaRESUMEN
BACKGROUND: Enhancement of N-methyl-D-aspartate (NMDA) receptor function using glycine-site agonist D-cycloserine is known to facilitate fear extinction, providing a means to augment cognitive behavioral therapy in anxiety disorders. A novel class of glycine-site agonists has recently been identified, and we have found that the prototype, AICP, is more effective than D-cycloserine in modulating neuronal function. METHODS: Using novel glycine-site agonist AICP, local infusion studies, and genetic models, we elucidated the role of GluN2C-containing receptors in fear extinction. RESULTS: We tested the effect of intracerebroventricular injection of AICP on fear extinction and found a robust facilitation of fear extinction. This effect was dependent on GluN2C subunit, consistent with superagonist action of AICP at GluN2C-containing receptors. Local infusion studies in wild-type and GluN2C knockout mice suggested that AICP produces its effect via GluN2C-containing receptors in the basolateral amygdala (BLA). Furthermore, consistent with astrocytic expression of GluN2C subunit in the amygdala, we found that AICP did not facilitate fear extinction in mice with conditional deletion of obligatory GluN1 subunit from astrocytes. Importantly, chemogenetic activation of astrocytes in the basolateral amygdala facilitated fear extinction. Acutely, AICP was found to facilitate excitatory neurotransmission in the BLA via presynaptic GluN2C-dependent mechanism. Immunohistochemical studies suggest that AICP-mediated facilitation of fear extinction involves synaptic insertion of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor GluA1 subunit. CONCLUSION: These results identify a unique role of astrocytic NMDA receptors composed of GluN2C subunit in extinction of conditioned fear memory and demonstrate that further development of recently identified superagonists of GluN2C-containing receptors may have utility for anxiety disorders.
Asunto(s)
Amígdala del Cerebelo/efectos de los fármacos , Astrocitos/metabolismo , Extinción Psicológica/efectos de los fármacos , Miedo/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Complejo Nuclear Basolateral/metabolismo , Condicionamiento Psicológico/efectos de los fármacos , Cicloserina/farmacología , Agonistas de Aminoácidos Excitadores/farmacología , Ratones , Receptores AMPA/metabolismo , Transmisión Sináptica/efectos de los fármacos , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/metabolismoRESUMEN
Glutamate delta-1 receptor (GluD1) is a member of the ionotropic glutamate receptor family expressed at excitatory synapses and functions as a synaptogenic protein by interacting with presynaptic neurexin. We have previously shown that GluD1 plays a role in the maintenance of excitatory synapses in a region-specific manner. Loss of GluD1 leads to reduced excitatory neurotransmission in medium spiny neurons (MSNs) in the dorsal striatum, but not in the ventral striatum (both core and shell of the nucleus accumbens (NAc)). Here, we found that GluD1 loss leads to reduced inhibitory neurotransmission in MSNs of the NAc core as evidenced by a reduction in the miniature inhibitory postsynaptic current frequency and amplitude. Presynaptic effect of GluD1 loss was further supported by an increase in paired pulse ratio of evoked inhibitory responses indicating reduced release probability. Furthermore, analysis of GAD67 puncta indicated a reduction in the number of putative inhibitory terminals. The changes in mIPSC were independent of cannabinoid or dopamine signaling. A role of feed-forward inhibition was tested by selective ablation of GluD1 from PV neurons which produced modest reduction in mIPSCs. Behaviorally, local ablation of GluD1 from NAc led to hypolocomotion and affected anxiety- and depression-like behaviors. When GluD1 was ablated from the dorsal striatum, several behavioral phenotypes were altered in opposite manner compared to GluD1 ablation from NAc. Our findings demonstrate that GluD1 regulates inhibitory neurotransmission in the NAc by a combination of pre- and postsynaptic mechanisms which is critical for motor control and behaviors relevant to neuropsychiatric disorders.
Asunto(s)
Ansiedad/metabolismo , Glutamato Deshidrogenasa/biosíntesis , Potenciales Postsinápticos Inhibidores/fisiología , Inhibición Neural/fisiología , Núcleo Accumbens/metabolismo , Transmisión Sináptica/fisiología , Animales , Ansiedad/genética , Antagonistas de Aminoácidos Excitadores/farmacología , Glutamato Deshidrogenasa/antagonistas & inhibidores , Glutamato Deshidrogenasa/genética , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Locomoción/efectos de los fármacos , Locomoción/fisiología , Masculino , Ratones , Ratones Noqueados , Inhibición Neural/efectos de los fármacos , Núcleo Accumbens/efectos de los fármacos , Interacción Social/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacosRESUMEN
Glutamate delta 1 (GluD1) and glutamate delta 2 (GluD2) form the delta family of ionotropic glutamate receptors; these proteins plays widespread roles in synaptic architecture, motor behavior, and cognitive function. Though the role of GluD2 at cerebellar parallel fiber-Purkinje cell synapses is well established, attention now turns to the function of GluD receptors in the forebrain. GluD1 regulates synaptic assembly and modulation in multiple higher brain regions, acting as a postsynaptic cell adhesion molecule with effects on both excitatory and inhibitory transmission. Furthermore, variations and mutations in the GRID1 gene, which codes for GluD1, and in genes which code for proteins functionally linked to GluD1, are associated with mental disorders including autism, schizophrenia, bipolar disorder, and major depression. Cerebellin (Cbln) family proteins, the primary binding partners of delta receptors, are secreted C1q-like proteins which also bind presynaptic neurexins (NRXNs), forming a tripartite synaptic bridge. Published research explores this bridge's function in regions including the striatum, hippocampus, cortex, and cerebellum. In this review, we summarize region- and circuit-specific functions and expression patterns for GluD1 and its related proteins, and their implications for behavior and disease.
Asunto(s)
Mapeo Encefálico , Prosencéfalo/metabolismo , Receptores de Glutamato/biosíntesis , Sinapsis/metabolismo , Animales , Mapeo Encefálico/métodos , Humanos , Trastornos Mentales/genética , Trastornos Mentales/metabolismo , Receptores de Glutamato/genética , Sinapsis/genéticaRESUMEN
The glutamate receptor delta 1 (GluD1) is strongly expressed in the striatum. Knockout of GluD1 expression in striatal neurons elicits cognitive deficits and disrupts the thalamostriatal system in mice. To understand the potential role of GluD1 in the primate striatum, we compared the cellular and subcellular localization of striatal GluD1 immunoreactivity (GluD1-IR) in mice and monkeys. In both species, striatal GluD1-IR displayed a patchy pattern of distribution in register with the striosome/matrix compartmentation, but in an opposite fashion. While GluD1 was more heavily expressed in the striosomes than the matrix in the monkey caudate nucleus, the opposite was found in the mouse striatum. At the electron microscopic level, GluD1-IR was preferentially expressed in dendritic shafts (47.9 ± 1.2%), followed by glia (37.7 ± 2.5%), and dendritic spines (14.3 ± 2.6%) in the matrix of the mouse striatum. This pattern was not statistically different from the labeling in the striosome and matrix compartments of the monkey caudate nucleus, with the exception of a small amount of GluD1-positive unmyelinated axons and axon terminals in the primate striatum. Immunogold staining revealed synaptic and perisynaptic GluD1 labeling at putative axo-dendritic and axo-spinous glutamatergic synapses, and intracellular labeling on the surface of mitochondria. Confocal microscopy showed that GluD1 is preferentially colocalized with thalamic over cortical terminals in both the striosome and matrix compartments. These data provide the anatomical substrate for a deeper understanding of GluD1 regulation of striatal glutamatergic synapses, but also suggest possible extrasynaptic, glial, and mitochondrial GluD1 functions.
Asunto(s)
Cuerpo Estriado/metabolismo , Receptores de Glutamato/metabolismo , Animales , Macaca mulatta , Masculino , RatonesRESUMEN
While post-traumatic stress disorder (PTSD) can develop after exposure to severe traumatic events, data have shown that individuals with high sensation-seeking personality traits are less prone to developing PTSD. The current study used the rodent environmental enrichment preclinical model of sensation-seeking to determine if similar sensation seeking effects in animal models of PTSD-like behaviors were found. The study also attempted to determine whether environmental enrichment altered the effects of midazolam on these PTSD-like behaviors. Male Sprague-Dawley rats were received at postnatal day (PND) 21 and placed into either an enriched (EC), isolated (IC), or social (SC) condition. Beginning on PND 51, the animals underwent 3 fear conditioning trials where a tone was paired with a 2 s 0.7 mA footshock. Twenty-four hours later, rats were given 15-min i.p. pretreatments of 0, 0.5, or 1.5 mg/kg midazolam, before being placed into fear conditioning chambers for a test of expression of conditioned fear response in a novel context. Following fear conditioning, rodents were also tested in the elevated plus maze (EPM) and the forced swim task (FST) following pretreatments of midazolam. Results from fear conditioning indicated IC rats showed a significant decrease in freezing during acquisition compared to EC and SC rats. Also, during expression, IC rats had lower freezing following saline injections and 0.5 mg/kg midazolam but were equal in time freezing to EC and SC rats following 1.5 mg/kg midazolam. In the EPM there were no effects of midazolam and IC rats showed decreased time spent in the open arms compared to EC and SC rats. In FST, IC rats spent less time immobile and more time swimming compared to EC and SC rats. Overall, results suggest that the rodent environmental enrichment model of sensation-seeking seems to parallel the effects of sensation-seeking on likelihood of PTSD symptoms seen in humans.
Asunto(s)
Ansiedad , Conducta Animal/efectos de los fármacos , Señales (Psicología) , Animales , Condicionamiento Clásico/efectos de los fármacos , Miedo/efectos de los fármacos , Masculino , Midazolam/farmacología , Midazolam/uso terapéutico , Ratas , Ratas Sprague-Dawley , Trastornos por Estrés Postraumático/tratamiento farmacológico , Trastornos por Estrés Postraumático/psicologíaRESUMEN
Impaired behavioral flexibility and repetitive behavior is a common phenotype in autism and other neuropsychiatric disorders, but the underlying synaptic mechanisms are poorly understood. The trans-synaptic glutamate delta (GluD)-Cerebellin 1-Neurexin complex, critical for synapse formation/maintenance, represents a vulnerable axis for neuropsychiatric diseases. We have previously found that GluD1 deletion results in reversal learning deficit and repetitive behavior. In this study, we show that selective ablation of GluD1 from the dorsal striatum impairs behavioral flexibility in a water T-maze task. We further found that striatal GluD1 is preferentially found in dendritic shafts, and more frequently associated with thalamic than cortical glutamatergic terminals suggesting localization to projections from the thalamic parafascicular nucleus (Pf). Conditional deletion of GluD1 from the striatum led to a selective loss of thalamic, but not cortical, terminals, and reduced glutamatergic neurotransmission. Optogenetic studies demonstrated functional changes at thalamostriatal synapses from the Pf, but no effect on the corticostriatal system, upon ablation of GluD1 in the dorsal striatum. These studies suggest a novel molecular mechanism by which genetic variations associated with neuropsychiatric disorders may impair behavioral flexibility, and reveal a unique principle by which GluD1 subunit regulates forebrain circuits.
Asunto(s)
Conducta Animal/fisiología , Cuerpo Estriado/metabolismo , Receptores de Glutamato/metabolismo , Tálamo/metabolismo , Animales , Cuerpo Estriado/fisiología , Femenino , Masculino , Ratones , Neurogénesis/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Tálamo/fisiopatologíaRESUMEN
Although combination antiretroviral therapy (cART) has improved the health of millions of those living with HIV-1 (Human Immunodeficiency Virus, Type 1), the penetration into the central nervous system (CNS) of many such therapies is limited, thereby resulting in residual neurocognitive impairment commonly referred to as NeuroHIV. Additionally, while cART has successfully suppressed peripheral viremia, cytotoxicity associated with the presence of viral Transactivator of transcription (Tat) protein in tissues such as the brain, remains a significant concern. Our previous study has demonstrated that both HIV-1 Tat as well as opiates such as morphine, can directly induce synaptic alterations via independent pathways. Herein, we demonstrate that exposure of astrocytes to HIV-1 protein Tat mediates the induction and release of extracellular vesicle (EV) microRNA-7 (miR-7) that is taken up by neurons, leading in turn, to downregulation of neuronal neuroligin 2 (NLGN2) and ultimately to synaptic alterations. More importantly, we report that these impairments could be reversed by pretreatment of neurons with a neurotrophic factor platelet-derived growth factor-CC (PDGF-CC). Graphical Abstract.