Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 11810, 2024 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-38782976

RESUMEN

In this retrospective study, we aimed to assess the objective and subjective image quality of different reconstruction techniques and a deep learning-based software on non-contrast head computed tomography (CT) images. In total, 152 adult head CT scans (77 female, 75 male; mean age 69.4 ± 18.3 years) obtained from three different CT scanners using different protocols between March and April 2021 were included. CT images were reconstructed using filtered-back projection (FBP), iterative reconstruction (IR), and post-processed using a deep learning-based algorithm (PS). Post-processing significantly reduced noise in FBP-reconstructed images (up to 15.4% reduction) depending on the protocol, leading to improvements in signal-to-noise ratio of up to 19.7%. However, when deep learning-based post-processing was applied to FBP images compared to IR alone, the differences were inconsistent and partly non-significant, which appeared to be protocol or site specific. Subjective assessments showed no significant overall improvement in image quality for all reconstructions and post-processing. Inter-rater reliability was low and preferences varied. Deep learning-based denoising software improved objective image quality compared to FBP in routine head CT. A significant difference compared to IR was observed for only one protocol. Subjective assessments did not indicate a significant clinical impact in terms of improved subjective image quality, likely due to the low noise levels in full-dose images.


Asunto(s)
Aprendizaje Profundo , Cabeza , Programas Informáticos , Tomografía Computarizada por Rayos X , Humanos , Femenino , Tomografía Computarizada por Rayos X/métodos , Masculino , Anciano , Cabeza/diagnóstico por imagen , Estudios Retrospectivos , Persona de Mediana Edad , Anciano de 80 o más Años , Procesamiento de Imagen Asistido por Computador/métodos , Relación Señal-Ruido , Adulto , Algoritmos , Interpretación de Imagen Radiográfica Asistida por Computador/métodos
2.
Diagnostics (Basel) ; 14(6)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38535032

RESUMEN

Non-contrast computed tomography (CT) is commonly used for the evaluation of various pathologies including pulmonary infections or urolithiasis but, especially in low-dose protocols, image quality is reduced. To improve this, deep learning-based post-processing approaches are being developed. Therefore, we aimed to compare the objective and subjective image quality of different reconstruction techniques and a deep learning-based software on non-contrast chest and low-dose abdominal CTs. In this retrospective study, non-contrast chest CTs of patients suspected of COVID-19 pneumonia and low-dose abdominal CTs suspected of urolithiasis were analysed. All images were reconstructed using filtered back-projection (FBP) and were post-processed using an artificial intelligence (AI)-based commercial software (PixelShine (PS)). Additional iterative reconstruction (IR) was performed for abdominal CTs. Objective and subjective image quality were evaluated. AI-based post-processing led to an overall significant noise reduction independent of the protocol (chest or abdomen) while maintaining image information (max. difference in SNR 2.59 ± 2.9 and CNR 15.92 ± 8.9, p < 0.001). Post-processing of FBP-reconstructed abdominal images was even superior to IR alone (max. difference in SNR 0.76 ± 0.5, p ≤ 0.001). Subjective assessments verified these results, partly suggesting benefits, especially in soft-tissue imaging (p < 0.001). All in all, the deep learning-based denoising-which was non-inferior to IR-offers an opportunity for image quality improvement especially in institutions using older scanners without IR availability. Further studies are necessary to evaluate potential effects on dose reduction benefits.

3.
Br J Radiol ; 97(1154): 430-438, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38308031

RESUMEN

OBJECTIVES: Malignant triton tumours (MTTs) are rare but aggressive subtypes of malignant peripheral nerve sheath tumours (MPNSTs) with a high recurrence rate and 5-year survival of 14%. Systematic imaging data on MTTs are scarce and mainly based on single case reports. Therefore, we aimed to identify typical CT and MRI features to improve early diagnosis rates of this uncommon entity. METHODS: A systematic review on literature published until December 2022 on imaging characteristics of MTTs was performed. Based on that, we conducted a retrospective, monocentric analysis of patients with histopathologically proven MTTs from our department. Explorative data analysis was performed. RESULTS: Initially, 29 studies on 34 patients (31.42 ± 22.6 years, 12 female) were evaluated: Literature described primary MTTs as huge, lobulated tumours (108 ± 99.3 mm) with central necrosis (56% [19/34]), low T1w (81% [17/21]), high T2w signal (90% [19/21]) and inhomogeneous enhancement on MRI (54% [7/13]). Analysis of 16 patients (48.9 ± 13.8 years; 9 female) from our institution revealed comparable results: primary MTTs showed large, lobulated masses (118 mm ± 64.9) with necrotic areas (92% [11/12]). MRI revealed low T1w (100% [7/7]), high T2w signal (100% [7/7]) and inhomogeneous enhancement (86% [6/7]). Local recurrences and soft-tissue metastases mimicked these features, while nonsoft-tissue metastases appeared unspecific. CONCLUSIONS: MTTs show characteristic features on CT and MRI. However, these do not allow a reliable differentiation between MTTs and other MPNSTs based on imaging alone. Therefore, additional histopathological analysis is required. ADVANCES IN KNOWLEDGE: This largest published systematic analysis on MTT imaging revealed typical but unspecific imaging features that do not allow a reliable, imaging-based differentiation between MTTs and other MPNSTs. Hence, additional histopathological analysis remains essential.


Asunto(s)
Neoplasias de la Vaina del Nervio , Neurofibrosarcoma , Neoplasias Cutáneas , Neoplasias de los Tejidos Blandos , Femenino , Humanos , Imagen por Resonancia Magnética , Neoplasias de la Vaina del Nervio/diagnóstico por imagen , Neurofibrosarcoma/complicaciones , Neurofibrosarcoma/patología , Estudios Retrospectivos , Neoplasias de los Tejidos Blandos/diagnóstico por imagen , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA