Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(4): e0300276, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38557670

RESUMEN

Experimental evolution (EE) is a powerful research framework for gaining insights into many biological questions, including the evolution of reproductive systems. We designed a long-term and highly replicated EE project using the nematode C. elegans, with the main aim of investigating the impact of reproductive system on adaptation and diversification under environmental challenge. From the laboratory-adapted strain N2, we derived isogenic lines and introgressed the fog-2(q71) mutation, which changes the reproductive system from nearly exclusive selfing to obligatory outcrossing, independently into 3 of them. This way, we obtained 3 pairs of isogenic ancestral populations differing in reproductive system; from these, we derived replicate EE populations and let them evolve in either novel (increased temperature) or control conditions for over 100 generations. Subsequently, fitness of both EE and ancestral populations was assayed under the increased temperature conditions. Importantly, each population was assayed in 2-4 independent blocks, allowing us to gain insight into the reproducibility of fitness scores. We expected to find upward fitness divergence, compared to ancestors, in populations which had evolved in this treatment, particularly in the outcrossing ones due to the benefits of genetic shuffling. However, our data did not support these predictions. The first major finding was very strong effect of replicate block on populations' fitness scores. This indicates that despite standardization procedures, some important environmental effects were varying among blocks, and possibly compounded by epigenetic inheritance. Our second key finding was that patterns of EE populations' divergence from ancestors differed among the ancestral isolines, suggesting that research conclusions derived for any particular genetic background should never be generalized without sampling a wider set of backgrounds. Overall, our results support the calls to pay more attention to biological variability when designing studies and interpreting their results, and to avoid over-generalizations of outcomes obtained for specific genetic and/or environmental conditions.


Asunto(s)
Caenorhabditis elegans , Genitales , Animales , Caenorhabditis elegans/genética , Temperatura , Reproducibilidad de los Resultados , Antecedentes Genéticos , Evolución Biológica
2.
PLoS Biol ; 22(4): e3002456, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38603525

RESUMEN

A recent article claimed that researchers need not increase the overall sample size for a study that includes both sexes. This Formal Comment points out that that study assumed two sexes to have the same variance, and explains why this is a unrealistic assumption.


Asunto(s)
Proyectos de Investigación , Masculino , Femenino , Humanos , Tamaño de la Muestra
3.
Artículo en Inglés | MEDLINE | ID: mdl-38494176

RESUMEN

Brilliant, diverse colour ornaments of birds were one of the crucial cues that led Darwin to the idea of sexual selection. Although avian colouration plays many functions, including concealment, thermoregulation, or advertisement as a distasteful prey, a quality-signalling role in sexual selection has attracted most research attention. Sexually selected ornaments are thought to be more susceptible to external stressors than naturally selected traits, and as such, they might be used as a test for environmental quality. For this reason, the last two decades have seen numerous studies on the impact of anthropogenic pollution on the expression of various avian colour traits. Herein, we provide the first meta-analytical summary of these results and examine whether there is an interaction between the mechanism of colour production (carotenoid-based, melanin-based and structural) and the type of anthropogenic factor (categorised as heavy metals, persistent organic pollutants, urbanisation, or other). Following the assumption of heightened condition dependence of ornaments under sexual selection, we also expected the magnitude of effect sizes to be higher in males. The overall effect size was close to significance and negative, supporting a general detrimental impact of anthropogenic pollutants on avian colouration. In contrast to expectations, there was no interaction between pollution types and colour-producing mechanisms. Yet there were significant differences in sensitivity between colour-producing mechanisms, with carotenoid-based colouration being the most affected by anthropogenic environmental disturbances. Moreover, we observed no significant tendency towards heightened sensitivity in males. We identified a publication gap on structural colouration, which, compared to pigment-based colouration, remains markedly understudied and should thus be prioritised in future research. Finally, we call for the unification of methods used in colour quantification in ecological research to ensure comparability of results among studies.

4.
Proc Biol Sci ; 291(2018): 20232840, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38471557

RESUMEN

Scientific knowledge is produced in multiple languages but is predominantly published in English. This practice creates a language barrier to generate and transfer scientific knowledge between communities with diverse linguistic backgrounds, hindering the ability of scholars and communities to address global challenges and achieve diversity and equity in science, technology, engineering and mathematics (STEM). To overcome those barriers, publishers and journals should provide a fair system that supports non-native English speakers and disseminates knowledge across the globe. We surveyed policies of 736 journals in biological sciences to assess their linguistic inclusivity, identify predictors of inclusivity, and propose actions to overcome language barriers in academic publishing. Our assessment revealed a grim landscape where most journals were making minimal efforts to overcome language barriers. The impact factor of journals was negatively associated with adopting a number of inclusive policies whereas ownership by a scientific society tended to have a positive association. Contrary to our expectations, the proportion of both open access articles and editors based in non-English speaking countries did not have a major positive association with the adoption of linguistically inclusive policies. We proposed a set of actions to overcome language barriers in academic publishing, including the renegotiation of power dynamics between publishers and editorial boards.


Asunto(s)
Disciplinas de las Ciencias Biológicas , Edición , Lenguaje , Lingüística
5.
J Evol Biol ; 37(4): 471-485, 2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38350467

RESUMEN

Critical thermal limits (CTLs) gauge the physiological impact of temperature on survival or critical biological function, aiding predictions of species range shifts and climatic resilience. Two recent Drosophila species studies, using similar approaches to determine temperatures that induce sterility (thermal fertility limits [TFLs]), reveal that TFLs are often lower than CTLs and that TFLs better predict both current species distributions and extinction probability. Moreover, many studies show fertility is more sensitive at less extreme temperatures than survival (thermal sensitivity of fertility [TSF]). These results present a more pessimistic outlook on the consequences of climate change. However, unlike CTLs, TFL data are limited to Drosophila, and variability in TSF methods poses challenges in predicting species responses to increasing temperature. To address these data and methodological gaps, we propose 3 standardized approaches for assessing thermal impacts on fertility. We focus on adult obligate sexual terrestrial invertebrates but also provide modifications for other animal groups and life-history stages. We first outline a "gold-standard" protocol for determining TFLs, focussing on the effects of short-term heat shocks and simulating more frequent extreme heat events predicted by climate models. As this approach may be difficult to apply to some organisms, we then provide a standardized TSF protocol. Finally, we provide a framework to quantify fertility loss in response to extreme heat events in nature, given the limitations in laboratory approaches. Applying these standardized approaches across many taxa, similar to CTLs, will allow robust tests of the impact of fertility loss on species responses to increasing temperatures.


Asunto(s)
Cambio Climático , Invertebrados , Animales , Temperatura , Fertilidad , Drosophila
6.
Trends Ecol Evol ; 39(5): 435-445, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38216408

RESUMEN

Comparative analyses and meta-analyses are key tools to elucidate broad biological principles, yet the two approaches often appear different in purpose. We propose an integrated approach that can generate deeper insights into ecoevolutionary processes. Marrying comparative and meta-analytic approaches will allow for (i) a more accurate investigation of drivers of biological variation, (ii) a greater ability to account for sources of non-independence in experimental data, (iii) more effective control of publication bias, and (iv) improved transparency and reproducibility. Stronger integration of meta-analytic and comparative studies can also broaden the scope from species-centric investigations to community-level responses and function-valued traits (e.g., reaction norms). We illuminate commonalities, differences, and the transformative potential of combining these methodologies for advancing ecology and evolutionary biology.


Asunto(s)
Evolución Biológica , Ecología , Metaanálisis como Asunto , Ecología/métodos
7.
PLoS Biol ; 22(1): e3002423, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38190355

RESUMEN

Power analysis currently dominates sample size determination for experiments, particularly in grant and ethics applications. Yet, this focus could paradoxically result in suboptimal study design because publication biases towards studies with the largest effects can lead to the overestimation of effect sizes. In this Essay, we propose a paradigm shift towards better study designs that focus less on statistical power. We also advocate for (pre)registration and obligatory reporting of all results (regardless of statistical significance), better facilitation of team science and multi-institutional collaboration that incorporates heterogenization, and the use of prospective and living meta-analyses to generate generalizable results. Such changes could make science more effective and, potentially, more equitable, helping to cultivate better collaborations.


Asunto(s)
Proyectos de Investigación , Estudios Prospectivos , Tamaño de la Muestra , Sesgo de Publicación
8.
Ecol Lett ; 26(8): 1466-1481, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37278985

RESUMEN

Coral reefs are under threat from disease as climate change alters environmental conditions. Rising temperatures exacerbate coral disease, but this relationship is likely complex as other factors also influence coral disease prevalence. To better understand this relationship, we meta-analytically examined 108 studies for changes in global coral disease over time alongside temperature, expressed using average summer sea surface temperature (SST) and cumulative heat stress as weekly sea surface temperature anomalies (WSSTAs). We found that both rising average summer SST and WSSTA were associated with global increases in the mean and variability in coral disease prevalence. Global coral disease prevalence tripled, reaching 9.92% in the 25 years examined, and the effect of 'year' became more stable (i.e. prevalence has lower variance over time), contrasting the effects of the two temperature stressors. Regional patterns diverged over time and differed in response to average summer SST. Our model predicted that, under the same trajectory, 76.8% of corals would be diseased globally by 2100, even assuming moderate average summer SST and WSSTA. These results highlight the need for urgent action to mitigate coral disease. Mitigating the impact of rising ocean temperatures on coral disease is a complex challenge requiring global discussion and further study.


Asunto(s)
Antozoos , Animales , Antozoos/fisiología , Temperatura , Prevalencia , Arrecifes de Coral , Cambio Climático
10.
PLoS Biol ; 21(2): e3002016, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36854018

RESUMEN

Large brains provide adaptive cognitive benefits but require unusually high, near-constant energy inputs and become fully functional well after their growth is completed. Consequently, young of most larger-brained endotherms should not be able to independently support the growth and development of their own brains. This paradox is solved if the evolution of extended parental provisioning facilitated brain size evolution. Comparative studies indeed show that extended parental provisioning coevolved with brain size and that it may improve immature survival. The major role of extended parental provisioning supports the idea that the ability to sustain the costs of brains limited brain size evolution.


Asunto(s)
Encéfalo , Vertebrados , Animales , Tamaño de los Órganos
11.
Proc Natl Acad Sci U S A ; 120(2): e2121467120, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36608292

RESUMEN

Large brains support numerous cognitive adaptations and therefore may appear to be highly beneficial. Nonetheless, the high energetic costs of brain tissue may have prevented the evolution of large brains in many species. This problem may also have a developmental dimension: juveniles, with their immature and therefore poorly performing brains, would face a major energetic hurdle if they were to pay for the construction of their own brain, especially in larger-brained species. Here, we explore the possible role of parental provisioning for the development and evolution of adult brain size in birds. A comparative analysis of 1,176 bird species shows that various measures of parental provisioning (precocial vs. altricial state at hatching, relative egg mass, time spent provisioning the young) strongly predict relative brain size across species. The parental provisioning hypothesis also provides an explanation for the well-documented but so far unexplained pattern that altricial birds have larger brains than precocial ones. We therefore conclude that the evolution of parental provisioning allowed species to overcome the seemingly insurmountable energetic constraint on growing large brains, which in turn enabled bird species to increase survival and population stability. Because including adult eco- and socio-cognitive predictors only marginally improved the explanatory value of our models, these findings also suggest that the traditionally assessed cognitive abilities largely support successful parental provisioning. Our results therefore indicate that the cognitive adaptations underlying successful parental provisioning also provide the behavioral flexibility facilitating reproductive success and survival.


Asunto(s)
Aves , Encéfalo , Animales , Tamaño de los Órganos , Reproducción
12.
Ecology ; 104(2): e3908, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36314902

RESUMEN

Identifying the environmental drivers of variation in fitness-related traits is a central objective in ecology and evolutionary biology. Temporal fluctuations of these environmental drivers are often synchronized at large spatial scales. Yet, whether synchronous environmental conditions can generate spatial synchrony in fitness-related trait values (i.e., correlated temporal trait fluctuations across populations) is poorly understood. Using data from long-term monitored populations of blue tits (Cyanistes caeruleus, n = 31), great tits (Parus major, n = 35), and pied flycatchers (Ficedula hypoleuca, n = 20) across Europe, we assessed the influence of two local climatic variables (mean temperature and mean precipitation in February-May) on spatial synchrony in three fitness-related traits: laying date, clutch size, and fledgling number. We found a high degree of spatial synchrony in laying date but a lower degree in clutch size and fledgling number for each species. Temperature strongly influenced spatial synchrony in laying date for resident blue tits and great tits but not for migratory pied flycatchers. This is a relevant finding in the context of environmental impacts on populations because spatial synchrony in fitness-related trait values among populations may influence fluctuations in vital rates or population abundances. If environmentally induced spatial synchrony in fitness-related traits increases the spatial synchrony in vital rates or population abundances, this will ultimately increase the risk of extinction for populations and species. Assessing how environmental conditions influence spatiotemporal variation in trait values improves our mechanistic understanding of environmental impacts on populations.


Asunto(s)
Passeriformes , Pájaros Cantores , Animales , Temperatura , Estaciones del Año , Reproducción
13.
Sci Rep ; 12(1): 18484, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36323747

RESUMEN

Whether melanin-based plumage colouration accurately reflects a bird's quality is still controversial. To better understand potential mechanisms behind the observed variation in plumage colouration, we shifted our attention from a high-level expression of colour to low-level physiological phenomena by targeting the microstructure and pigment content of the feather. In a well-studied model system, the house sparrow (Passer domesticus), we combined an experimental manipulation of birds' physiological condition and availability of resources that are key to the production of the studied colouration (phenylalanine and tyrosine (PT). We found that feathers from sparrows fed with the control diet had noticeably lower values of brightness, suggesting a higher quality of the ornamental "blackness" in comparison to those sampled from birds fed with a PT-reduced diet. Electron paramagnetic resonance (EPR) spectroscopy detected higher melanin concentrations in samples from the control than the PT-reduced group. Our multi-level analysis excluded mechanisms such as barbule density and melanosomes' distribution, clearly pointing to the finest-level proxy of colour: the concentration of melanin in melanosomes themselves. Despite melanins being manufactured by birds endogenously, the efficiency of melanogenesis can be noticeably limited by diet. As a result, the birds' plumage colouration is affected, which may entail consequences in social signalling.


Asunto(s)
Melaninas , Gorriones , Animales , Melaninas/metabolismo , Gorriones/metabolismo , Plásticos/metabolismo , Plumas/metabolismo , Pigmentación/fisiología , Dieta
14.
Sci Data ; 9(1): 600, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36195601

RESUMEN

Rising temperatures represent a significant threat to the survival of ectothermic animals. As such, upper thermal limits represent an important trait to assess the vulnerability of ectotherms to changing temperatures. For instance, one may use upper thermal limits to estimate current and future thermal safety margins (i.e., the proximity of upper thermal limits to experienced temperatures), use this trait together with other physiological traits in species distribution models, or investigate the plasticity and evolvability of these limits for buffering the impacts of changing temperatures. While datasets on thermal tolerance limits have been previously compiled, they sometimes report single estimates for a given species, do not present measures of data dispersion, and are biased towards certain parts of the globe. To overcome these limitations, we systematically searched the literature in seven languages to produce the most comprehensive dataset to date on amphibian upper thermal limits, spanning 3,095 estimates across 616 species. This resource will represent a useful tool to evaluate the vulnerability of amphibians, and ectotherms more generally, to changing temperatures.


Asunto(s)
Anfibios , Termotolerancia , Animales , Bases de Datos Factuales , Calor , Temperatura
15.
Ecol Lett ; 25(10): 2245-2268, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36006770

RESUMEN

Understanding the factors affecting thermal tolerance is crucial for predicting the impact climate change will have on ectotherms. However, the role developmental plasticity plays in allowing populations to cope with thermal extremes is poorly understood. Here, we meta-analyse how thermal tolerance is initially and persistently impacted by early (embryonic and juvenile) thermal environments by using data from 150 experimental studies on 138 ectothermic species. Thermal tolerance only increased by 0.13°C per 1°C change in developmental temperature and substantial variation in plasticity (~36%) was the result of shared evolutionary history and species ecology. Aquatic ectotherms were more than three times as plastic as terrestrial ectotherms. Notably, embryos expressed weaker but more heterogenous plasticity than older life stages, with numerous responses appearing as non-adaptive. While developmental temperatures did not have persistent effects on thermal tolerance overall, persistent effects were vastly under-studied, and their direction and magnitude varied with ontogeny. Embryonic stages may represent a critical window of vulnerability to changing environments and we urge researchers to consider early life stages when assessing the climate vulnerability of ectotherms. Overall, our synthesis suggests that developmental changes in thermal tolerance rarely reach levels of perfect compensation and may provide limited benefit in changing environments.


Asunto(s)
Aclimatación , Calor , Aclimatación/fisiología , Cambio Climático , Plásticos , Temperatura
16.
Nat Commun ; 13(1): 2112, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35440555

RESUMEN

The phenology of many species shows strong sensitivity to climate change; however, with few large scale intra-specific studies it is unclear how such sensitivity varies over a species' range. We document large intra-specific variation in phenological sensitivity to temperature using laying date information from 67 populations of two co-familial European songbirds, the great tit (Parus major) and blue tit (Cyanistes caeruleus), covering a large part of their breeding range. Populations inhabiting deciduous habitats showed stronger phenological sensitivity than those in evergreen and mixed habitats. However, populations with higher sensitivity tended to have experienced less rapid change in climate over the past decades, such that populations with high phenological sensitivity will not necessarily exhibit the strongest phenological advancement. Our results show that to effectively assess the impact of climate change on phenology across a species' range it will be necessary to account for intra-specific variation in phenological sensitivity, climate change exposure, and the ecological characteristics of a population.


Asunto(s)
Passeriformes , Pájaros Cantores , Animales , Cambio Climático , Estaciones del Año , Temperatura
17.
J Exp Biol ; 225(Suppl_1)2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35258606

RESUMEN

Meta-analysis is a powerful tool used to generate quantitatively informed answers to pressing global challenges. By distilling data from broad sets of research designs and study systems into standardised effect sizes, meta-analyses provide physiologists with opportunities to estimate overall effect sizes and understand the drivers of effect variability. Despite this ambition, research designs in the field of comparative physiology can appear, at the outset, as being vastly different to each other because of 'nuisance heterogeneity' (e.g. different temperatures or treatment dosages used across studies). Methodological differences across studies have led many to believe that meta-analysis is an exercise in comparing 'apples with oranges'. Here, we dispel this myth by showing how standardised effect sizes can be used in conjunction with multilevel meta-regression models to both account for the factors driving differences across studies and make them more comparable. We assess the prevalence of nuisance heterogeneity in the comparative physiology literature - showing it is common and often not accounted for in analyses. We then formalise effect size measures (e.g. the temperature coefficient, Q10) that provide comparative physiologists with a means to remove nuisance heterogeneity without the need to resort to more complex statistical models that may be harder to interpret. We also describe more general approaches that can be applied to a variety of different contexts to derive new effect sizes and sampling variances, opening up new possibilities for quantitative synthesis. By using effect sizes that account for components of effect heterogeneity, in combination with existing meta-analytic models, comparative physiologists can explore exciting new questions while making results from large-scale data sets more accessible, comparable and widely interpretable.


Asunto(s)
Modelos Estadísticos , Fisiología Comparada
18.
Front Zool ; 19(1): 9, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35227275

RESUMEN

BACKGROUND: Relatively few studies have examined the interactive effects of ecological factors on physiological responses in wild animals. Nearly all of them have been short-term investigations that did not include experimental manipulations, limiting our ability to understand how climate change will affect natural populations. Using a 10-year brood size manipulation experiment in wild blue tits (Cyanistes caeruleus), we quantified the impact of weather conditions and brood competition on the body mass and structural size (tarsus length) of nestlings just prior to leaving the nest. RESULTS: We found that variation in nestling body mass on day 14 after hatching was explained by an interactive effect between average ambient temperature experienced during nestling period and brood size treatment. Specifically, in control broods nestling body mass was correlated with temperature in a non-linear manner (concave) with the vertex point (maximum body mass) at ca. 13 °C. In contrast, in enlarged broods nestling body mass permanently increased (also non-linearly) as temperature advanced. CONCLUSIONS: Our results highlight the importance of considering the effects of brood rearing conditions alongside other environmental factors experienced during growth while investigating early-life environmental effects on body condition.

19.
Heredity (Edinb) ; 128(1): 63-76, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34921237

RESUMEN

Genetic variation is one of the key concepts in evolutionary biology and an important prerequisite of evolutionary change. However, we know very little about processes that modulate its levels in wild populations. In particular, we still are to understand why genetic variances often depend on environmental conditions. One of possible environment-sensitive modulators of observed levels of genetic variance are maternal effects. In this study we attempt to experimentally test the hypothesis that maternally transmitted agents (e.g. hormones) may influence the expression of genetic variance in quantitative traits in the offspring. We manipulated the levels of steroid hormones (testosterone and corticosterone) in eggs laid by blue tits in a wild population. Our experimental setup allowed for full crossing of genetic and rearing effects with the experimental manipulation. We observed that birds treated with corticosterone exhibited a significant decrease in broad-sense genetic variance of tarsus length, and an increase in this component in body mass on the 2nd day post-hatching. Our study indicates, that maternally transmitted substances such as hormones may have measurable impact on the levels of genetic variance and hence, on the evolutionary potential of quantitative traits.


Asunto(s)
Animales Salvajes , Aves , Animales , Animales Salvajes/genética , Aves/genética , Corticosterona/farmacología , Fenotipo , Esteroides
20.
Curr Zool ; 67(6): 585-596, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34805536

RESUMEN

Achromatic patches are a common element of plumage patterns in many bird species and there is growing body of evidence that in many avian taxa they can play a signaling role in mate choice. Although the blue tit Cyanistes caeruleus is a well-established model species in the studies on coloration, its white wing patch has never been examined in the context of sex-specific trait expression. In this exploratory study, we examined sexual size dimorphism and dichromatism of greater covert's dots creating white wing patch and analyzed its correlations with current body condition and crown coloration-a trait with established role in sexual selection. Further, we qualitatively analyzed microstructural barb morphology underlying covert's coloration. We found significant sexual dimorphism in the dot size independent of covert size and sexual dichromatism in both white dot and blue outer covert's vane spectral characteristics. Internal structure of covert barbs within the white dot was similar to the one found in barbs from the blue part that is, with a medullary area consisting of dead keratinocytes containing channel-type ß-keratin spongy nanostructure and centrally located air cavities. However, it lacked melanosomes which was the main observed difference. Importantly, UV chroma of covert's blue vane was positively correlated with crown UV chroma and current condition (the latter only in males), which should be a premise for further research on the signal function of the wing stripe.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA