RESUMEN
In pediatric cancer, structural variants (SVs) and copy-number alterations contribute to cancer initiation as well as progression, thereby aiding diagnosis and treatment stratification. Although suggested to be of importance, the prevalence and biological relevance of complex genomic rearrangements (CGRs) across pediatric solid tumors is largely unexplored. In a cohort of 120 primary tumors, we systematically characterized patterns of extrachromosomal DNA, chromoplexy, and chromothripsis across five pediatric solid cancer types. CGRs were identified in 56 tumors (47%), and in 42 of these tumors, CGRs affect cancer driver genes or result in unfavorable chromosomal alterations. This demonstrates that CGRs are prevalent and pathogenic in pediatric solid tumors and suggests that selection likely contributes to the structural variation landscape. Moreover, carrying CGRs is associated with more adverse clinical events. Our study highlights the potential for CGRs to be incorporated in risk stratification or exploited for targeted treatments.
RESUMEN
Metabolic rewiring is a defining characteristic of cancer cells, driving their ability to proliferate. Leveraging these metabolic vulnerabilities for therapeutic purposes has a long and impactful history, with the advent of antimetabolites marking a significant breakthrough in cancer treatment. Despite this, only a few in vitro metabolic discoveries have been successfully translated into effective clinical therapies. This limited translatability is partially due to the use of simplistic in vitro models that do not accurately reflect the tumor microenvironment. This Review examines the effects of current cell culture practices on cancer cell metabolism and highlights recent advancements in establishing more physiologically relevant in vitro culture conditions and technologies, such as organoids. Applying these improvements may bridge the gap between in vitro and in vivo findings, facilitating the development of innovative metabolic therapies for cancer.
RESUMEN
INTRODUCTION: Angiogenesis is critical for tumor growth and metastasis. Bevacizumab is an antiangiogenic drug used to treat various adult and childhood solid tumors. Its potential efficacy in Wilms tumor (WT) with poor prognosis is not established. AREAS COVERED: The response to bevacizumab-containing regimens in relapsed or refractory WT was reviewed in available literature. Searches were conducted using PubMed, Scopus, and ClinicalTrials.gov databases. Eight papers were identified, published between 2007 and 2020, including six treatment regimens, predominantly vincristine, irinotecan, and bevacizumab (VIB) ± temozolomide (VITB). Among 16 evaluable patients, there were two complete responses, seven partial responses, five patients achieved stable disease (SD), and two patients had progressive disease. Objective responses (OR) were observed in 56% of all cases. OR or SD was observed in 89% (8/9) patients who received VIB/VITB. Bevacizumab was generally well tolerated. Related toxicities included hypertension, proteinuria, and delayed wound healing. EXPERT OPINION: This review suggests potential effectiveness and good tolerability of bevacizumab in the setting of relapsed/refractory WT when used in combination with other drugs. Such combination therapies may serve as a bridging treatment option to other interventions and more personalized treatment options in the future; however, focused trials are needed to obtain additional evidence.
Asunto(s)
Inhibidores de la Angiogénesis , Protocolos de Quimioterapia Combinada Antineoplásica , Bevacizumab , Neoplasias Renales , Recurrencia Local de Neoplasia , Tumor de Wilms , Humanos , Bevacizumab/administración & dosificación , Bevacizumab/efectos adversos , Bevacizumab/farmacología , Tumor de Wilms/tratamiento farmacológico , Tumor de Wilms/patología , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/patología , Inhibidores de la Angiogénesis/administración & dosificación , Inhibidores de la Angiogénesis/efectos adversos , Inhibidores de la Angiogénesis/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Recurrencia Local de Neoplasia/tratamiento farmacológico , Niño , Pronóstico , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/patologíaRESUMEN
CD70 is an attractive target for chimeric antigen receptor (CAR) T-cell therapy for the treatment of both solid and liquid malignancies. However, the functionality of CD70-specific CAR T cells is modest. We optimized a CD70-specific VHH-based CAR (nanoCAR). We evaluated the nanoCARs in clinically relevant models in vitro, using co-cultures of CD70-specific nanoCAR T cells with malignant rhabdoid tumor organoids, and in vivo, using a diffuse large B-cell lymphoma patient-derived xenograft (PDX) model. Although the nanoCAR T cells were highly efficient in organoid co-cultures, they showed only modest efficacy in the PDX model. We determined that fratricide was not causing this loss in efficacy but rather CD70 interaction in cis with the nanoCAR-induced exhaustion. Knocking out CD70 in nanoCAR T cells using CRISPR/Cas9 resulted in dramatically enhanced functionality in the diffuse large B-cell lymphoma PDX model. Through single-cell transcriptomics, we obtained evidence that CD70 knockout CD70-specific nanoCAR T cells were protected from antigen-induced exhaustion. In addition, we demonstrated that wild-type CD70-specific nanoCAR T cells already exhibited signs of exhaustion shortly after production. Their gene signature strongly overlapped with gene signatures of exhausted CAR T cells. Conversely, the gene signature of knockout CD70-specific nanoCAR T cells overlapped with the gene signature of CAR T-cell infusion products leading to complete responses in chronic lymphatic leukemia patients. Our data show that CARs targeting endogenous T-cell antigens negatively affect CAR T-cell functionality by inducing an exhausted state, which can be overcome by knocking out the specific target.
Asunto(s)
Ligando CD27 , Inmunoterapia Adoptiva , Receptores Quiméricos de Antígenos , Ensayos Antitumor por Modelo de Xenoinjerto , Humanos , Animales , Ratones , Inmunoterapia Adoptiva/métodos , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/genética , Linfocitos T/inmunología , Linfocitos T/metabolismo , Linfoma de Células B Grandes Difuso/inmunología , Linfoma de Células B Grandes Difuso/terapia , Linfoma de Células B Grandes Difuso/genética , Técnicas de Inactivación de Genes , Línea Celular Tumoral , Sistemas CRISPR-CasRESUMEN
SUMMARY: We are building the world's first Virtual Child-a computer model of normal and cancerous human development at the level of each individual cell. The Virtual Child will "develop cancer" that we will subject to unlimited virtual clinical trials that pinpoint, predict, and prioritize potential new treatments, bringing forward the day when no child dies of cancer, giving each one the opportunity to lead a full and healthy life.
Asunto(s)
Neoplasias , Humanos , Neoplasias/genéticaRESUMEN
Human leukocyte antigen (HLA) restriction of conventional T-cell targeting introduces complexity in generating T-cell therapy strategies for patients with cancer with diverse HLA-backgrounds. A subpopulation of atypical, major histocompatibility complex-I related protein 1 (MR1)-restricted T-cells, distinctive from mucosal-associated invariant T-cells (MAITs), was recently identified recognizing currently unidentified MR1-presented cancer-specific metabolites. It is hypothesized that the MC.7.G5 MR1T-clone has potential as a pan-cancer, pan-population T-cell immunotherapy approach. These cells are irresponsive to healthy tissue while conferring T-cell receptor(TCR) dependent, HLA-independent cytotoxicity to a wide range of adult cancers. Studies so far are limited to adult malignancies. Here, we investigated the potential of MR1-targeting cellular therapy strategies in pediatric cancer. Bulk RNA sequencing data of primary pediatric tumors were analyzed to assess MR1 expression. In vitro pediatric tumor models were subsequently screened to evaluate their susceptibility to engineered MC.7.G5 TCR-expressing T-cells. Targeting capacity was correlated with qPCR-based MR1 mRNA and protein overexpression. RNA expression of MR1 in primary pediatric tumors varied widely within and between tumor entities. Notably, embryonal tumors exhibited significantly lower MR1 expression than other pediatric tumors. In line with this, most screened embryonal tumors displayed resistance to MR1T-targeting in vitro MR1T susceptibility was observed particularly in pediatric leukemia and diffuse midline glioma models. This study demonstrates potential of MC.7.G5 MR1T-cell immunotherapy in pediatric leukemias and diffuse midline glioma, while activity against embryonal tumors was limited. The dismal prognosis associated with relapsed/refractory leukemias and high-grade brain tumors highlights the promise to improve survival rates of children with these cancers.
Asunto(s)
Glioma , Leucemia , Neoplasias de Células Germinales y Embrionarias , Humanos , Niño , Antígenos de Histocompatibilidad Clase I , Receptores de Antígenos de Linfocitos T , Antígenos de Histocompatibilidad Clase II , Antígenos de Histocompatibilidad MenorRESUMEN
Human tissue three-dimensional (3D) organoid cultures have the potential to reproduce in vitro the physiological properties and cellular architecture of the organs from which they are derived. The ability of organoid cultures derived from human stomach, liver, kidney, and colon to metabolically activate three dietary carcinogens, aflatoxin B1 (AFB1), aristolochic acid I (AAI), and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), was investigated. In each case, the response of a target tissue (liver for AFB1; kidney for AAI; colon for PhIP) was compared with that of a nontarget tissue (gastric). After treatment cell viabilities were measured, DNA damage response (DDR) was determined by Western blotting for p-p53, p21, p-CHK2, and γ-H2AX, and DNA adduct formation was quantified by mass spectrometry. Induction of the key xenobiotic-metabolizing enzymes (XMEs) CYP1A1, CYP1A2, CYP3A4, and NQO1 was assessed by qRT-PCR. We found that organoids from different tissues can activate AAI, AFB1, and PhIP. In some cases, this metabolic potential varied between tissues and between different cultures of the same tissue. Similarly, variations in the levels of expression of XMEs were observed. At comparable levels of cytotoxicity, organoids derived from tissues that are considered targets for these carcinogens had higher levels of adduct formation than a nontarget tissue.
Asunto(s)
Aductos de ADN , Neoplasias , Humanos , Carcinógenos/toxicidad , Carcinógenos/metabolismo , Hígado/metabolismo , Organoides/metabolismoRESUMEN
The modern study of Wilms tumour was prompted nearly 50 years ago, when Alfred Knudson proposed the 'two-hit' model of tumour development. Since then, the efforts of researchers worldwide have substantially expanded our knowledge of Wilms tumour biology, including major advances in genetics - from cloning the first Wilms tumour gene to high-throughput studies that have revealed the genetic landscape of this tumour. These discoveries improve understanding of the embryonal origin of Wilms tumour, familial occurrences and associated syndromic conditions. Many efforts have been made to find and clinically apply prognostic biomarkers to Wilms tumour, for which outcomes are generally favourable, but treatment of some affected individuals remains challenging. Challenges are also posed by the intratumoural heterogeneity of biomarkers. Furthermore, preclinical models of Wilms tumour, from cell lines to organoid cultures, have evolved. Despite these many achievements, much still remains to be discovered: further molecular understanding of relapse in Wilms tumour and of the multiple origins of bilateral Wilms tumour are two examples of areas under active investigation. International collaboration, especially when large tumour series are required to obtain robust data, will help to answer some of the remaining unresolved questions.
Asunto(s)
Neoplasias Renales , Tumor de Wilms , Humanos , Neoplasias Renales/terapia , Recurrencia Local de Neoplasia , Tumor de Wilms/terapia , Biomarcadores , BiologíaRESUMEN
Malignant rhabdoid tumor (MRT) is a highly malignant and often lethal childhood cancer. MRTs are genetically defined by bi-allelic inactivating mutations in SMARCB1, a member of the BRG1/BRM-associated factors (BAF) chromatin remodeling complex. Mutations in BAF complex members are common in human cancer, yet their contribution to tumorigenesis remains in many cases poorly understood. Here, we study derailed regulatory landscapes as a consequence of SMARCB1 loss in the context of MRT. Our multi-omics approach on patient-derived MRT organoids reveals a dramatic reshaping of the regulatory landscape upon SMARCB1 reconstitution. Chromosome conformation capture experiments subsequently reveal patient-specific looping of distal enhancer regions with the promoter of the MYC oncogene. This intertumoral heterogeneity in MYC enhancer utilization is also present in patient MRT tissues as shown by combined single-cell RNA-seq and ATAC-seq. We show that loss of SMARCB1 activates patient-specific epigenetic reprogramming underlying MRT tumorigenesis.
Asunto(s)
Tumor Rabdoide , Humanos , Niño , Tumor Rabdoide/genética , Tumor Rabdoide/patología , Proteína SMARCB1/genética , Factores de Transcripción/genética , Mutación , Regiones Promotoras Genéticas/genética , Carcinogénesis/genéticaRESUMEN
Enteroendocrine cells (EECs) are hormone-producing cells residing in the epithelium of stomach, small intestine (SI), and colon. EECs regulate aspects of metabolic activity, including insulin levels, satiety, gastrointestinal secretion, and motility. The generation of different EEC lineages is not completely understood. In this work, we report a CRISPR knockout screen of the entire repertoire of transcription factors (TFs) in adult human SI organoids to identify dominant TFs controlling EEC differentiation. We discovered ZNF800 as a master repressor for endocrine lineage commitment, which particularly restricts enterochromaffin cell differentiation by directly controlling an endocrine TF network centered on PAX4. Thus, organoid models allow unbiased functional CRISPR screens for genes that program cell fate.
Asunto(s)
Sistemas CRISPR-Cas , Linaje de la Célula , Células Enteroendocrinas , Regulación de la Expresión Génica , Proteínas Represoras , Dedos de Zinc , Humanos , Diferenciación Celular/genética , Células Enteroendocrinas/citología , Células Enteroendocrinas/metabolismo , Organoides , Adulto , Linaje de la Célula/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismoRESUMEN
Introduction: Metastatic rhabdomyosarcoma (RMS) is a challenging tumor entity that evades conventional treatments and endogenous antitumor immune responses, highlighting the need for novel therapeutic strategies. Applying chimeric antigen receptor (CAR) technology to natural killer (NK) cells may offer safe, effective, and affordable therapies that enhance cancer immune surveillance. Methods: Here, we assess the efficacy of clinically usable CAR-engineered NK cell line NK-92/5.28.z against ErbB2-positive RMS in vitro and in a metastatic xenograft mouse model. Results: Our results show that NK-92/5.28.z cells effectively kill RMS cells in vitro and significantly prolong survival and inhibit tumor progression in mice. The persistence of NK-92/5.28.z cells at tumor sites demonstrates efficient antitumor response, which could help overcome current obstacles in the treatment of solid tumors. Discussion: These findings encourage further development of NK-92/5.28.z cells as off-the-shelf immunotherapy for the treatment of metastatic RMS.
Asunto(s)
Neoplasias Primarias Secundarias , Receptores Quiméricos de Antígenos , Rabdomiosarcoma Alveolar , Rabdomiosarcoma , Humanos , Animales , Ratones , Rabdomiosarcoma Alveolar/terapia , Receptores Quiméricos de Antígenos/genética , Inmunoterapia , Rabdomiosarcoma/terapia , Modelos Animales de Enfermedad , Células Asesinas NaturalesRESUMEN
In acute lymphoblastic leukemia (ALL), chromosomal translocations involving the KMT2A gene represent highly unfavorable prognostic factors and most commonly occur in patients less than 1 year of age. Rearrangements of the KMT2A gene drive epigenetic changes that lead to aberrant gene expression profiles that strongly favor leukemia development. Apart from this genetic lesion, the mutational landscape of KMT2A-rearranged ALL is remarkably silent, providing limited insights for the development of targeted therapy. Consequently, identifying potential therapeutic targets often relies on differential gene expression, yet the inhibition of these genes has rarely translated into successful therapeutic strategies. Therefore, we performed CRISPR-Cas9 knock-out screens to search for genetic dependencies in KMT2A-rearranged ALL. We utilized small-guide RNA libraries directed against the entire human epigenome and kinome in various KMT2A-rearranged ALL, as well as wild-type KMT2A ALL cell line models. This screening approach led to the discovery of the epigenetic regulators ARID4B and MBD3, as well as the receptor kinase BMPR2 as novel molecular vulnerabilities and attractive therapeutic targets in KMT2A-rearranged ALL.
Asunto(s)
Sistemas CRISPR-Cas , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Biblioteca de Genes , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Factores de Transcripción , Línea Celular , Antígenos de Neoplasias , Proteínas de NeoplasiasRESUMEN
BACKGROUND: Gene fusions are important cancer drivers in pediatric cancer and their accurate detection is essential for diagnosis and treatment. Clinical decision-making requires high confidence and precision of detection. Recent developments show RNA sequencing (RNA-seq) is promising for genome-wide detection of fusion products but hindered by many false positives that require extensive manual curation and impede discovery of pathogenic fusions. METHODS: We developed Fusion-sq to overcome existing disadvantages of detecting gene fusions. Fusion-sq integrates and "fuses" evidence from RNA-seq and whole genome sequencing (WGS) using intron-exon gene structure to identify tumor-specific protein coding gene fusions. Fusion-sq was then applied to the data generated from a pediatric pan-cancer cohort of 128 patients by WGS and RNA sequencing. RESULTS: In a pediatric pan-cancer cohort of 128 patients, we identified 155 high confidence tumor-specific gene fusions and their underlying structural variants (SVs). This includes all clinically relevant fusions known to be present in this cohort (30 patients). Fusion-sq distinguishes healthy-occurring from tumor-specific fusions and resolves fusions in amplified regions and copy number unstable genomes. A high gene fusion burden is associated with copy number instability. We identified 27 potentially pathogenic fusions involving oncogenes or tumor-suppressor genes characterized by underlying SVs, in some cases leading to expression changes indicative of activating or disruptive effects. CONCLUSIONS: Our results indicate how clinically relevant and potentially pathogenic gene fusions can be identified and their functional effects investigated by combining WGS and RNA-seq. Integrating RNA fusion predictions with underlying SVs advances fusion detection beyond extensive manual filtering. Taken together, we developed a method for identifying candidate gene fusions that is suitable for precision oncology applications. Our method provides multi-omics evidence for assessing the pathogenicity of tumor-specific gene fusions for future clinical decision making.
Asunto(s)
Neoplasias , Niño , Humanos , Neoplasias/genética , RNA-Seq , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Medicina de Precisión , Análisis de Secuencia de ARN/métodos , Fusión Génica , Secuenciación Completa del GenomaRESUMEN
Paediatric rhabdomyosarcoma (RMS) is a soft tissue malignancy of mesenchymal origin that is thought to arise as a consequence of derailed myogenic differentiation. Despite intensive treatment regimens, the prognosis for high-risk patients remains dismal. The cellular differentiation states underlying RMS and how these relate to patient outcomes remain largely elusive. Here, we use single-cell mRNA sequencing to generate a transcriptomic atlas of RMS. Analysis of the RMS tumour niche reveals evidence of an immunosuppressive microenvironment. We also identify a putative interaction between NECTIN3 and TIGIT, specific to the more aggressive fusion-positive (FP) RMS subtype, as a potential cause of tumour-induced T-cell dysfunction. In malignant RMS cells, we define transcriptional programs reflective of normal myogenic differentiation and show that these cellular differentiation states are predictive of patient outcomes in both FP RMS and the less aggressive fusion-negative subtype. Our study reveals the potential of therapies targeting the immune microenvironment of RMS and suggests that assessing tumour differentiation states may enable a more refined risk stratification.
Asunto(s)
Rabdomiosarcoma Embrionario , Rabdomiosarcoma , Niño , Humanos , Transcriptoma , Proliferación Celular/genética , Rabdomiosarcoma/genética , Rabdomiosarcoma/patología , Perfilación de la Expresión Génica , Línea Celular Tumoral , Microambiente Tumoral/genéticaRESUMEN
Atypical teratoid/rhabdoid tumors (ATRTs) represent a rare, but aggressive pediatric brain tumor entity. They are genetically defined by alterations in the SWI/SNF chromatin remodeling complex members SMARCB1 or SMARCA4. ATRTs can be further classified in different molecular subgroups based on their epigenetic profiles. Although recent studies suggest that the different subgroups have distinct clinical features, subgroup-specific treatment regimens have not been developed thus far. This is hampered by the lack of pre-clinical in vitro models representative of the different molecular subgroups. Here, we describe the establishment of ATRT tumoroid models from the ATRT-MYC and ATRT-SHH subgroups. We demonstrate that ATRT tumoroids retain subgroup-specific epigenetic and gene expression profiles. High throughput drug screens on our ATRT tumoroids revealed distinct drug sensitivities between and within ATRT-MYC and ATRT-SHH subgroups. Whereas ATRT-MYC universally displayed high sensitivity to multi-targeted tyrosine kinase inhibitors, ATRT-SHH showed a more heterogeneous response with a subset showing high sensitivity to NOTCH inhibitors, which corresponded to high expression of NOTCH receptors. Our ATRT tumoroids represent the first pediatric brain tumor organoid model, providing a representative pre-clinical model which enables the development of subgroup-specific therapies.
Asunto(s)
Neoplasias Encefálicas , Tumor Rabdoide , Teratoma , Niño , Humanos , Teratoma/tratamiento farmacológico , Teratoma/genética , Proteína SMARCB1/genética , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Tumor Rabdoide/tratamiento farmacológico , Tumor Rabdoide/genética , Tumor Rabdoide/metabolismo , Receptores Notch , Epigenómica , ADN Helicasas , Proteínas Nucleares , Factores de Transcripción/genéticaRESUMEN
Colorectal cancer progression is intrinsically linked to stepwise deregulation of the intestinal differentiation trajectory. In this process, sequential mutations of APC, KRAS, TP53, and SMAD4 enable oncogenic signaling and establish the hallmarks of cancer. Here, we use mass cytometry of isogenic human colon organoids and patient-derived cancer organoids to capture oncogenic signaling, cell phenotypes, and differentiation states in a high-dimensional single-cell map. We define a differentiation axis in all tumor progression states from normal to cancer. Our data show that colorectal cancer driver mutations shape the distribution of cells along the differentiation axis. In this regard, subsequent mutations can have stem cell promoting or restricting effects. Individual nodes of the cancer cell signaling network remain coupled to the differentiation state, regardless of the presence of driver mutations. We use single-cell RNA sequencing to link the (phospho-)protein signaling network to transcriptomic states with biological and clinical relevance. Our work highlights how oncogenes gradually shape signaling and transcriptomes during tumor progression.
Asunto(s)
Diferenciación Celular , Neoplasias Colorrectales , Oncogenes , Transducción de Señal , Humanos , Neoplasias Colorrectales/genética , Intestinos , MutaciónRESUMEN
OBJECTIVE: To review somatic genetic changes in nephrogenic rests (NR), which are considered to be precursor lesions of Wilms tumors (WT). METHODS: This systematic review is written according to the PRISMA statement. PubMed and EMBASE were systematically searched for articles in the English language studying somatic genetic changes in NR between 1990 and 2022. RESULTS: Twenty-three studies were included in this review, describing 221 NR of which 119 were pairs of NR and WT. Single gene studies showed mutations in WT1 and WTX, but not CTNNB1 to occur in both NR and WT. Studies investigating chromosomal changes showed loss of heterozygosity of 11p13 and 11p15 to occur in both NR and WT, but loss of 7p and 16q occurred in WT only. Methylome-based studies found differential methylation patterns between NR, WT, and normal kidney (NK). CONCLUSIONS: Over a 30-year time frame, few studies have addressed genetic changes in NR, likely hampered by technical and practical limitations. A limited number of genes and chromosomal regions have been implicated in the early pathogenesis of WT, exemplified by their occurrence in NR, including WT1, WTX, and genes located at 11p15. Further studies of NR and corresponding WT are urgently needed.
RESUMEN
This review highlights the role of several immunomodulating elements contributing to the tumor microenvironment of various pediatric renal tumors including Wilms tumor. The roles of innate and adaptive immune cells in renal tumors are summarized as well as immunomodulatory cytokines and other proteins. The expression and the predictive role of checkpoint modulators like PD-L1 and immunomodulating proteins like glypican-3, B7-H3, COX-2 are highlighted with a translational view toward potential therapeutic innovations. We further discuss the current state of preclinical models in advancing this field of study. Finally, examples of clinical trials of immunomodulating strategies such as monoclonal antibodies and chimeric antigen receptor T (CAR-T) cells for relapsed/refractory/progressive pediatric renal tumors are described.
Asunto(s)
Neoplasias Renales , Microambiente Tumoral , Niño , Humanos , Antígeno B7-H1 , Neoplasias Renales/tratamiento farmacológico , Inmunomodulación , Anticuerpos Monoclonales/uso terapéuticoRESUMEN
Despite the fact that 5-fluorouracil (5-FU) is the backbone for chemotherapy in colorectal cancer (CRC), the response rates in patients is limited to 50%. The mechanisms underlying 5-FU toxicity are debated, limiting the development of strategies to improve its efficacy. How fundamental aspects of cancer, such as driver mutations and phenotypic heterogeneity, relate to the 5-FU response remains obscure. This largely relies on the limited number of studies performed in pre-clinical models able to recapitulate the key features of CRC. Here, we analyzed the 5-FU response in patient-derived organoids that reproduce the different stages of CRC. We find that 5-FU induces pyrimidine imbalance, which leads to DNA damage and cell death in the actively proliferating cancer cells deficient in p53. Importantly, p53-deficiency leads to cell death due to impaired cell cycle arrest. Moreover, we find that targeting the Warburg effect in KRASG12D glycolytic tumor organoids enhances 5-FU toxicity by further altering the nucleotide pool and, importantly, without affecting non-transformed WT cells. Thus, p53 emerges as an important factor in determining the 5-FU response, and targeting cancer metabolism in combination with replication stress-inducing chemotherapies emerges as a promising strategy for CRC treatment.
Asunto(s)
Neoplasias Colorrectales , Proteína p53 Supresora de Tumor , Humanos , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Fluorouracilo/farmacología , Fluorouracilo/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , GlucosaRESUMEN
Chromosomal alterations have recurrently been identified in Wilms tumors (WTs) and some are associated with poor prognosis. Gain of 1q (1q+) is of special interest given its high prevalence and is currently actively studied for its prognostic value. However, the underlying mutational mechanisms and functional effects remain unknown. In a national unbiased cohort of 30 primary WTs, we integrated somatic SNVs, CNs and SVs with expression data and distinguished four clusters characterized by affected biological processes: muscle differentiation, immune system, kidney development and proliferation. Combined genome-wide CN and SV profiles showed that tumors profoundly differ in both their types of 1q+ and genomic stability and can be grouped into WTs with co-occurring 1p-/1q+, multiple chromosomal gains or CN neutral tumors. We identified 1q+ in eight tumors that differ in mutational mechanisms, subsequent rearrangements and genomic contexts. Moreover, 1q+ tumors were present in all four expression clusters reflecting activation of various biological processes, and individual tumors overexpress different genes on 1q. In conclusion, by integrating CNs, SVs and gene expression, we identified subgroups of 1q+ tumors reflecting differences in the functional effect of 1q gain, indicating that expression data is likely needed for further risk stratification of 1q+ WTs.