Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(2): 113718, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38294904

RESUMEN

How mechanical allodynia following nerve injury is encoded in patterns of neural activity in the spinal cord dorsal horn (DH) remains incompletely understood. We address this in mice using the spared nerve injury model of neuropathic pain and in vivo electrophysiological recordings. Surprisingly, despite dramatic behavioral over-reactivity to mechanical stimuli following nerve injury, an overall increase in sensitivity or reactivity of DH neurons is not observed. We do, however, observe a marked decrease in correlated neural firing patterns, including the synchrony of mechanical stimulus-evoked firing, across the DH. Alterations in DH temporal firing patterns are recapitulated by silencing DH parvalbumin+ (PV+) interneurons, previously implicated in mechanical allodynia, as are allodynic pain-like behaviors. These findings reveal decorrelated DH network activity, driven by alterations in PV+ interneurons, as a prominent feature of neuropathic pain and suggest restoration of proper temporal activity as a potential therapeutic strategy to treat chronic neuropathic pain.


Asunto(s)
Neuralgia , Percepción del Tiempo , Animales , Ratones , Hiperalgesia , Asta Dorsal de la Médula Espinal , Células del Asta Posterior , Interneuronas , Médula Espinal
2.
bioRxiv ; 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38260354

RESUMEN

Machine learning research has achieved large performance gains on a wide range of tasks by expanding the learning target from mean rewards to entire probability distributions of rewards - an approach known as distributional reinforcement learning (RL)1. The mesolimbic dopamine system is thought to underlie RL in the mammalian brain by updating a representation of mean value in the striatum2,3, but little is known about whether, where, and how neurons in this circuit encode information about higher-order moments of reward distributions4. To fill this gap, we used high-density probes (Neuropixels) to acutely record striatal activity from well-trained, water-restricted mice performing a classical conditioning task in which reward mean, reward variance, and stimulus identity were independently manipulated. In contrast to traditional RL accounts, we found robust evidence for abstract encoding of variance in the striatum. Remarkably, chronic ablation of dopamine inputs disorganized these distributional representations in the striatum without interfering with mean value coding. Two-photon calcium imaging and optogenetics revealed that the two major classes of striatal medium spiny neurons - D1 and D2 MSNs - contributed to this code by preferentially encoding the right and left tails of the reward distribution, respectively. We synthesize these findings into a new model of the striatum and mesolimbic dopamine that harnesses the opponency between D1 and D2 MSNs5-15 to reap the computational benefits of distributional RL.

3.
bioRxiv ; 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37732217

RESUMEN

The ability to make advantageous decisions is critical for animals to ensure their survival. Patch foraging is a natural decision-making process in which animals decide when to leave a patch of depleting resources to search for a new one. To study the algorithmic and neural basis of patch foraging behavior in a controlled laboratory setting, we developed a virtual foraging task for head-fixed mice. Mouse behavior could be explained by ramp-to-threshold models integrating time and rewards antagonistically. Accurate behavioral modeling required inclusion of a slowly varying "patience" variable, which modulated sensitivity to time. To investigate the neural basis of this decision-making process, we performed dense electrophysiological recordings with Neuropixels probes broadly throughout frontal cortex and underlying subcortical areas. We found that decision variables from the reward integrator model were represented in neural activity, most robustly in frontal cortical areas. Regression modeling followed by unsupervised clustering identified a subset of neurons with ramping activity. These neurons' firing rates ramped up gradually in single trials over long time scales (up to tens of seconds), were inhibited by rewards, and were better described as being generated by a continuous ramp rather than a discrete stepping process. Together, these results identify reward integration via a continuous ramping process in frontal cortex as a likely candidate for the mechanism by which the mammalian brain solves patch foraging problems.

4.
Philos Trans R Soc Lond B Biol Sci ; 378(1886): 20220344, 2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37545300

RESUMEN

A key computation in building adaptive internal models of the external world is to ascribe sensory signals to their likely cause(s), a process of causal inference (CI). CI is well studied within the framework of two-alternative forced-choice tasks, but less well understood within the cadre of naturalistic action-perception loops. Here, we examine the process of disambiguating retinal motion caused by self- and/or object-motion during closed-loop navigation. First, we derive a normative account specifying how observers ought to intercept hidden and moving targets given their belief about (i) whether retinal motion was caused by the target moving, and (ii) if so, with what velocity. Next, in line with the modelling results, we show that humans report targets as stationary and steer towards their initial rather than final position more often when they are themselves moving, suggesting a putative misattribution of object-motion to the self. Further, we predict that observers should misattribute retinal motion more often: (i) during passive rather than active self-motion (given the lack of an efference copy informing self-motion estimates in the former), and (ii) when targets are presented eccentrically rather than centrally (given that lateral self-motion flow vectors are larger at eccentric locations during forward self-motion). Results support both of these predictions. Lastly, analysis of eye movements show that, while initial saccades toward targets were largely accurate regardless of the self-motion condition, subsequent gaze pursuit was modulated by target velocity during object-only motion, but not during concurrent object- and self-motion. These results demonstrate CI within action-perception loops, and suggest a protracted temporal unfolding of the computations characterizing CI. This article is part of the theme issue 'Decision and control processes in multisensory perception'.


Asunto(s)
Percepción de Movimiento , Humanos , Movimientos Oculares , Movimiento (Física) , Movimientos Sacádicos , Orientación , Estimulación Luminosa
5.
bioRxiv ; 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36993199

RESUMEN

How mechanical allodynia following nerve injury is encoded in patterns of neural activity in the spinal cord dorsal horn (DH) is not known. We addressed this using the spared nerve injury model of neuropathic pain and in vivo electrophysiological recordings. Surprisingly, despite dramatic behavioral over-reactivity to mechanical stimuli following nerve injury, an overall increase in sensitivity or reactivity of DH neurons was not observed. We did, however, observe a marked decrease in correlated neural firing patterns, including the synchrony of mechanical stimulus-evoked firing, across the DH. Alterations in DH temporal firing patterns were recapitulated by silencing DH parvalbumin + (PV + ) inhibitory interneurons, previously implicated in mechanical allodynia, as were allodynic pain-like behaviors in mice. These findings reveal decorrelated DH network activity, driven by alterations in PV + interneurons, as a prominent feature of neuropathic pain, and suggest that restoration of proper temporal activity is a potential treatment for chronic neuropathic pain.

6.
Cereb Cortex ; 33(11): 6772-6784, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-36734278

RESUMEN

Gaze change can misalign spatial reference frames encoding visual and vestibular signals in cortex, which may affect the heading discrimination. Here, by systematically manipulating the eye-in-head and head-on-body positions to change the gaze direction of subjects, the performance of heading discrimination was tested with visual, vestibular, and combined stimuli in a reaction-time task in which the reaction time is under the control of subjects. We found the gaze change induced substantial biases in perceived heading, increased the threshold of discrimination and reaction time of subjects in all stimulus conditions. For the visual stimulus, the gaze effects were induced by changing the eye-in-world position, and the perceived heading was biased in the opposite direction of gaze. In contrast, the vestibular gaze effects were induced by changing the eye-in-head position, and the perceived heading was biased in the same direction of gaze. Although the bias was reduced when the visual and vestibular stimuli were combined, integration of the 2 signals substantially deviated from predictions of an extended diffusion model that accumulates evidence optimally over time and across sensory modalities. These findings reveal diverse gaze effects on the heading discrimination and emphasize that the transformation of spatial reference frames may underlie the effects.


Asunto(s)
Percepción de Movimiento , Vestíbulo del Laberinto , Humanos , Tiempo de Reacción , Corteza Cerebral , Sesgo , Percepción Visual , Estimulación Luminosa
7.
bioRxiv ; 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36778376

RESUMEN

A key computation in building adaptive internal models of the external world is to ascribe sensory signals to their likely cause(s), a process of Bayesian Causal Inference (CI). CI is well studied within the framework of two-alternative forced-choice tasks, but less well understood within the cadre of naturalistic action-perception loops. Here, we examine the process of disambiguating retinal motion caused by self- and/or object-motion during closed-loop navigation. First, we derive a normative account specifying how observers ought to intercept hidden and moving targets given their belief over (i) whether retinal motion was caused by the target moving, and (ii) if so, with what velocity. Next, in line with the modeling results, we show that humans report targets as stationary and steer toward their initial rather than final position more often when they are themselves moving, suggesting a misattribution of object-motion to the self. Further, we predict that observers should misattribute retinal motion more often: (i) during passive rather than active self-motion (given the lack of an efference copy informing self-motion estimates in the former), and (ii) when targets are presented eccentrically rather than centrally (given that lateral self-motion flow vectors are larger at eccentric locations during forward self-motion). Results confirm both of these predictions. Lastly, analysis of eye-movements show that, while initial saccades toward targets are largely accurate regardless of the self-motion condition, subsequent gaze pursuit was modulated by target velocity during object-only motion, but not during concurrent object- and self-motion. These results demonstrate CI within action-perception loops, and suggest a protracted temporal unfolding of the computations characterizing CI.

8.
Proc Natl Acad Sci U S A ; 120(9): e2210622120, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36812206

RESUMEN

Working memories are thought to be held in attractor networks in the brain. These attractors should keep track of the uncertainty associated with each memory, so as to weigh it properly against conflicting new evidence. However, conventional attractors do not represent uncertainty. Here, we show how uncertainty could be incorporated into an attractor, specifically a ring attractor that encodes head direction. First, we introduce a rigorous normative framework (the circular Kalman filter) for benchmarking the performance of a ring attractor under conditions of uncertainty. Next, we show that the recurrent connections within a conventional ring attractor can be retuned to match this benchmark. This allows the amplitude of network activity to grow in response to confirmatory evidence, while shrinking in response to poor-quality or strongly conflicting evidence. This "Bayesian ring attractor" performs near-optimal angular path integration and evidence accumulation. Indeed, we show that a Bayesian ring attractor is consistently more accurate than a conventional ring attractor. Moreover, near-optimal performance can be achieved without exact tuning of the network connections. Finally, we use large-scale connectome data to show that the network can achieve near-optimal performance even after we incorporate biological constraints. Our work demonstrates how attractors can implement a dynamic Bayesian inference algorithm in a biologically plausible manner, and it makes testable predictions with direct relevance to the head direction system as well as any neural system that tracks direction, orientation, or periodic rhythms.


Asunto(s)
Encéfalo , Redes Neurales de la Computación , Teorema de Bayes , Encéfalo/fisiología , Memoria a Corto Plazo , Cabeza/fisiología , Modelos Neurológicos
9.
Nat Commun ; 13(1): 7403, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36456546

RESUMEN

Identifying the structure of motion relations in the environment is critical for navigation, tracking, prediction, and pursuit. Yet, little is known about the mental and neural computations that allow the visual system to infer this structure online from a volatile stream of visual information. We propose online hierarchical Bayesian inference as a principled solution for how the brain might solve this complex perceptual task. We derive an online Expectation-Maximization algorithm that explains human percepts qualitatively and quantitatively for a diverse set of stimuli, covering classical psychophysics experiments, ambiguous motion scenes, and illusory motion displays. We thereby identify normative explanations for the origin of human motion structure perception and make testable predictions for future psychophysics experiments. The proposed online hierarchical inference model furthermore affords a neural network implementation which shares properties with motion-sensitive cortical areas and motivates targeted experiments to reveal the neural representations of latent structure.


Asunto(s)
Percepción de Movimiento , Humanos , Teorema de Bayes , Percepción Visual , Movimiento (Física) , Psicofísica
10.
IEEE Trans Signal Process ; 70: 686-700, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36338544

RESUMEN

Angular path integration is the ability of a system to estimate its own heading direction from potentially noisy angular velocity (or increment) observations. Non-probabilistic algorithms for angular path integration, which rely on a summation of these noisy increments, do not appropriately take into account the reliability of such observations, which is essential for appropriately weighing one's current heading direction estimate against incoming information. In a probabilistic setting, angular path integration can be formulated as a continuous-time nonlinear filtering problem (circular filtering) with observed state increments. The circular symmetry of heading direction makes this inference task inherently nonlinear, thereby precluding the use of popular inference algorithms such as Kalman filters, rendering the problem analytically inaccessible. Here, we derive an approximate solution to circular continuous-time filtering, which integrates state increment observations while maintaining a fixed representation through both state propagation and observational updates. Specifically, we extend the established projection-filtering method to account for observed state increments and apply this framework to the circular filtering problem. We further propose a generative model for continuous-time angular-valued direct observations of the hidden state, which we integrate seamlessly into the projection filter. Applying the resulting scheme to a model of probabilistic angular path integration, we derive an algorithm for circular filtering, which we term the circular Kalman filter. Importantly, this algorithm is analytically accessible, interpretable, and outperforms an alternative filter based on a Gaussian approximation.

11.
Elife ; 112022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36097814

RESUMEN

In uncertain environments, seeking information about alternative choice options is essential for adaptive learning and decision-making. However, information seeking is usually confounded with changes-of-mind about the reliability of the preferred option. Here, we exploited the fact that information seeking requires control over which option to sample to isolate its behavioral and neurophysiological signatures. We found that changes-of-mind occurring with control require more evidence against the current option, are associated with reduced confidence, but are nevertheless more likely to be confirmed on the next decision. Multimodal neurophysiological recordings showed that these changes-of-mind are preceded by stronger activation of the dorsal attention network in magnetoencephalography, and followed by increased pupil-linked arousal during the presentation of decision outcomes. Together, these findings indicate that information seeking increases the saliency of evidence perceived as the direct consequence of one's own actions.


Asunto(s)
Nivel de Alerta , Aprendizaje , Nivel de Alerta/fisiología , Cognición , Reproducibilidad de los Resultados , Incertidumbre
12.
Nat Hum Behav ; 6(12): 1691-1704, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36138224

RESUMEN

Statistical inference is the optimal process for forming and maintaining accurate beliefs about uncertain environments. However, human inference comes with costs due to its associated biases and limited precision. Indeed, biased or imprecise inference can trigger variable beliefs and unwarranted changes in behaviour. Here, by studying decisions in a sequential categorization task based on noisy visual stimuli, we obtained converging evidence that humans reduce the variability of their beliefs by updating them only when the reliability of incoming sensory information is judged as sufficiently strong. Instead of integrating the evidence provided by all stimuli, participants actively discarded as much as a third of stimuli. This conditional belief updating strategy shows good test-retest reliability, correlates with perceptual confidence and explains human behaviour better than previously described strategies. This seemingly suboptimal strategy not only reduces the costs of imprecise computations but also, counterintuitively, increases the accuracy of resulting decisions.


Asunto(s)
Reproducibilidad de los Resultados , Humanos , Incertidumbre , Sesgo
13.
Neuron ; 110(4): 722-733.e8, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-34863366

RESUMEN

During periods of rest, hippocampal place cells feature bursts of activity called sharp-wave ripples (SWRs). Heuristic approaches have revealed that a small fraction of SWRs appear to "simulate" trajectories through the environment, called awake hippocampal replay. However, the functional role of a majority of these SWRs remains unclear. We find, using Bayesian model comparison of state-space models to characterize the spatiotemporal dynamics embedded in SWRs, that almost all SWRs of foraging rodents simulate such trajectories. Furthermore, these trajectories feature momentum, or inertia in their velocities, that mirrors the animals' natural movement, in contrast to replay events during sleep, which lack such momentum. Last, we show that past analyses of replayed trajectories for navigational planning were biased by the heuristic SWR sub-selection. Our findings thus identify the dominant function of awake SWRs as simulating trajectories with momentum and provide a principled foundation for future work on their computational function.


Asunto(s)
Células de Lugar , Vigilia , Animales , Teorema de Bayes , Hipocampo , Sueño
14.
Nat Commun ; 12(1): 2228, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33850124

RESUMEN

Making accurate decisions in uncertain environments requires identifying the generative cause of sensory cues, but also the expected outcomes of possible actions. Although both cognitive processes can be formalized as Bayesian inference, they are commonly studied using different experimental frameworks, making their formal comparison difficult. Here, by framing a reversal learning task either as cue-based or outcome-based inference, we found that humans perceive the same volatile environment as more stable when inferring its hidden state by interaction with uncertain outcomes than by observation of equally uncertain cues. Multivariate patterns of magnetoencephalographic (MEG) activity reflected this behavioral difference in the neural interaction between inferred beliefs and incoming evidence, an effect originating from associative regions in the temporal lobe. Together, these findings indicate that the degree of control over the sampling of volatile environments shapes human learning and decision-making under uncertainty.


Asunto(s)
Encéfalo/fisiología , Toma de Decisiones/fisiología , Incertidumbre , Adulto , Teorema de Bayes , Señales (Psicología) , Femenino , Humanos , Aprendizaje , Magnetoencefalografía , Modelos Teóricos , Adulto Joven
15.
Elife ; 102021 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-33769284

RESUMEN

Traditional accumulation-to-bound decision-making models assume that all choice options are processed with equal attention. In real life decisions, however, humans alternate their visual fixation between individual items to efficiently gather relevant information (Yang et al., 2016). These fixations also causally affect one's choices, biasing them toward the longer-fixated item (Krajbich et al., 2010). We derive a normative decision-making model in which attention enhances the reliability of information, consistent with neurophysiological findings (Cohen and Maunsell, 2009). Furthermore, our model actively controls fixation changes to optimize information gathering. We show that the optimal model reproduces fixation-related choice biases seen in humans and provides a Bayesian computational rationale for this phenomenon. This insight led to additional predictions that we could confirm in human data. Finally, by varying the relative cognitive advantage conferred by attention, we show that decision performance is benefited by a balanced spread of resources between the attended and unattended items.


Asunto(s)
Conducta de Elección , Fijación Ocular , Teorema de Bayes , Humanos , Modelos Psicológicos , Reproducibilidad de los Resultados
16.
Sci Rep ; 11(1): 3714, 2021 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-33580096

RESUMEN

Motion relations in visual scenes carry an abundance of behaviorally relevant information, but little is known about how humans identify the structure underlying a scene's motion in the first place. We studied the computations governing human motion structure identification in two psychophysics experiments and found that perception of motion relations showed hallmarks of Bayesian structural inference. At the heart of our research lies a tractable task design that enabled us to reveal the signatures of probabilistic reasoning about latent structure. We found that a choice model based on the task's Bayesian ideal observer accurately matched many facets of human structural inference, including task performance, perceptual error patterns, single-trial responses, participant-specific differences, and subjective decision confidence-especially, when motion scenes were ambiguous and when object motion was hierarchically nested within other moving reference frames. Our work can guide future neuroscience experiments to reveal the neural mechanisms underlying higher-level visual motion perception.


Asunto(s)
Teorema de Bayes , Modelos Psicológicos , Percepción de Movimiento , Adulto , Femenino , Humanos , Masculino , Adulto Joven
17.
Nat Commun ; 12(1): 473, 2021 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-33473113

RESUMEN

How is information distributed across large neuronal populations within a given brain area? Information may be distributed roughly evenly across neuronal populations, so that total information scales linearly with the number of recorded neurons. Alternatively, the neural code might be highly redundant, meaning that total information saturates. Here we investigate how sensory information about the direction of a moving visual stimulus is distributed across hundreds of simultaneously recorded neurons in mouse primary visual cortex. We show that information scales sublinearly due to correlated noise in these populations. We compartmentalized noise correlations into information-limiting and nonlimiting components, then extrapolate to predict how information grows with even larger neural populations. We predict that tens of thousands of neurons encode 95% of the information about visual stimulus direction, much less than the number of neurons in primary visual cortex. These findings suggest that the brain uses a widely distributed, but nonetheless redundant code that supports recovering most sensory information from smaller subpopulations.


Asunto(s)
Modelos Neurológicos , Neuronas/fisiología , Corteza Visual/fisiología , Animales , Encéfalo , Masculino , Ratones , Ratones Endogámicos C57BL , Ruido , Estimulación Luminosa
18.
Trends Neurosci ; 43(12): 980-997, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33092893

RESUMEN

Learning about rewards and punishments is critical for survival. Classical studies have demonstrated an impressive correspondence between the firing of dopamine neurons in the mammalian midbrain and the reward prediction errors of reinforcement learning algorithms, which express the difference between actual reward and predicted mean reward. However, it may be advantageous to learn not only the mean but also the complete distribution of potential rewards. Recent advances in machine learning have revealed a biologically plausible set of algorithms for reconstructing this reward distribution from experience. Here, we review the mathematical foundations of these algorithms as well as initial evidence for their neurobiological implementation. We conclude by highlighting outstanding questions regarding the circuit computation and behavioral readout of these distributional codes.


Asunto(s)
Dopamina , Refuerzo en Psicología , Animales , Encéfalo , Humanos , Mesencéfalo , Recompensa
19.
Proc Natl Acad Sci U S A ; 117(39): 24581-24589, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32938799

RESUMEN

In the real world, complex dynamic scenes often arise from the composition of simpler parts. The visual system exploits this structure by hierarchically decomposing dynamic scenes: When we see a person walking on a train or an animal running in a herd, we recognize the individual's movement as nested within a reference frame that is, itself, moving. Despite its ubiquity, surprisingly little is understood about the computations underlying hierarchical motion perception. To address this gap, we developed a class of stimuli that grant tight control over statistical relations among object velocities in dynamic scenes. We first demonstrate that structured motion stimuli benefit human multiple object tracking performance. Computational analysis revealed that the performance gain is best explained by human participants making use of motion relations during tracking. A second experiment, using a motion prediction task, reinforced this conclusion and provided fine-grained information about how the visual system flexibly exploits motion structure.


Asunto(s)
Percepción de Movimiento , Percepción Visual , Adulto , Secuencia de Bases , Femenino , Humanos , Masculino , Movimiento , Adulto Joven
20.
Proc Natl Acad Sci U S A ; 117(33): 19799-19808, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32759219

RESUMEN

In multialternative risky choice, we are often faced with the opportunity to allocate our limited information-gathering capacity between several options before receiving feedback. In such cases, we face a natural trade-off between breadth-spreading our capacity across many options-and depth-gaining more information about a smaller number of options. Despite its broad relevance to daily life, including in many naturalistic foraging situations, the optimal strategy in the breadth-depth trade-off has not been delineated. Here, we formalize the breadth-depth dilemma through a finite-sample capacity model. We find that, if capacity is small (∼10 samples), it is optimal to draw one sample per alternative, favoring breadth. However, for larger capacities, a sharp transition is observed, and it becomes best to deeply sample a very small fraction of alternatives, which roughly decreases with the square root of capacity. Thus, ignoring most options, even when capacity is large enough to shallowly sample all of them, is a signature of optimal behavior. Our results also provide a rich casuistic for metareasoning in multialternative decisions with bounded capacity using close-to-optimal heuristics.


Asunto(s)
Toma de Decisiones , Heurística , Conducta de Elección , Humanos , Modelos Teóricos , Racionalización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...