Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Phys Chem C Nanomater Interfaces ; 128(9): 3674-3684, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38476828

RESUMEN

The physical electrochemistry of the carbon/ionic liquids interface underpins the processes occurring in a vast range of applications spanning electrochemical energy storage, iontronic devices, and lubrication. Elucidating the charge storage mechanisms at the carbon/electrolyte interface will lead to a better understanding of the operational principles of such systems. Herein, we probe the charge stored at the electrochemical double layer formed between model carbon systems, ranging from single-layer graphene to graphite and the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIM-TFSI). The effect of the number of graphene layers on the overall capacitance of the interface is investigated. We demonstrate that in pure EMIM-TFSI and at moderate potential biases, the electronic properties of graphene and graphite govern the overall capacitance of the interface, while the electrolyte contribution to the latter is less significant. In mixtures of EMIM-TFSI with solvents of varying relative permittivity, the complex interplay between electrolyte ions and solvent molecules is shown to influence the charge stored at the interface, which under certain conditions overcomes the effects of relative permittivity. This work provides additional experimental insights into the continuously advancing topic of electrochemical double-layer structure at the interface between room temperature ionic liquids and carbon materials.

2.
J Am Chem Soc ; 146(1): 760-772, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38153698

RESUMEN

Deciphering the mechanisms of charge storage on carbon-based materials is pivotal for the development of next-generation electrochemical energy storage systems. Graphene, the building block of graphitic electrodes, is an ideal model for probing such processes on a fundamental level. Herein, we investigate the thermodynamics of the graphene/aqueous electrolyte interface by utilizing a multiscale quantum mechanics-classical molecular dynamics (QM/MD) approach to provide insights into the effect of alkali metal ion (Li+) concentration on the interfacial tension (γSL) of the charged graphene/electrolyte interface. We demonstrate that the dependence of γSL on the applied surface charge exhibits an asymmetric behavior relative to the neutral surface. At the positively charged graphene sheet, the electrowetting response is amplified by electrolyte concentration, resulting in a strongly hydrophilic surface. On the contrary, at negative potential bias, γSL shows a weaker response to the charging of the electrode. Changes in γSL greatly affect the total areal capacitance predicted by the Young-Lippmann equation but have a negligible impact on the simulated total areal capacitance, indicating that the EDL structure is not directly correlated with the wettability of the surface and different interfacial mechanisms drive the two phenomena. The proposed model is validated experimentally by studying the electrowetting response of highly oriented pyrolytic graphite over a wide range of electrolyte concentrations. Our work presents the first combined theoretical and experimental study on electrowetting using carbon surfaces, introducing new conceptual routes for the investigation of wetting phenomena under potential bias.

3.
Chem Mater ; 35(19): 7904-7914, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37840778

RESUMEN

High entropy metal chalcogenides are materials containing five or more elements within a disordered sublattice. These materials exploit a high configurational entropy to stabilize their crystal structure and have recently become an area of significant interest for renewable energy applications such as electrocatalysis and thermoelectrics. Herein, we report the synthesis of bulk particulate HE zinc sulfide analogues containing four, five, and seven metals. This was achieved using a molecular precursor cocktail approach with both transition and main group metal dithiocarbamate complexes which are decomposed simultaneously in a rapid (1 h) and low-temperature (500 °C) thermolysis reaction to yield high entropy and entropy-stabilized metal sulfides. The resulting materials were characterized by powder XRD, SEM, and TEM, alongside EDX spectroscopy at both the micro- and nano-scales. The entropy-stabilized (CuAgZnCoMnInGa)S material was demonstrated to be an excellent electrocatalyst for the hydrogen evolution reaction when combined with conducting carbon black, achieving a low onset overpotential of (∼80 mV) and η10 of (∼255 mV).

7.
Faraday Discuss ; 246(0): 307-321, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37409473

RESUMEN

Electrowetting is a simple way to induce the spreading and retraction of electrolyte droplets. This method is widely used in "device" applications, where a dielectric layer is applied between the electrolyte and the conducting substrate. Recent work, including contributions from our own laboratory, have shown that reversible electrowetting can be achieved directly on conductors. We have shown that graphite surfaces, in particular when combined with highly concentrated electrolyte solutions, show a strong wetting effect. The process is driven by the interactions between the electrolyte ions and the surface, hence models of double-layer capacitance are able to explain changes in the equilibrium contact angles. Herein, we extend the approach to the investigation of electrowetting on graphene samples of varying thickness, prepared by chemical vapor deposition. We show that the use of highly concentrated aqueous electrolytes induces a clear yet subtle electrowetting response due to the adsorption of ions and the suppression of the negative effect introduced by the surface impurities accumulating during the transfer process. The latter have been previously reported to fully hinder electrowetting at lower electrolyte concentrations. An amplified wetting response is recorded in the presence of strongly adsorbed/intercalated anions in both aqueous and non-aqueous electrolytes. The phenomenon is interpreted based on the anion-graphene interactions and their influence on the energetics of the interface. By monitoring the dynamics of wetting, an irreversible behaviour is identified in all cases as a consequence of the irreversibility of anion adsorption and/or intercalation. Finally, the effect of the underlying reactions on the timescales of wetting is also examined.

8.
Phys Chem Chem Phys ; 25(27): 18121-18131, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37382482

RESUMEN

Thiourea-based receptors for anions have been widely studied due to their ability to transport anions across phospholipid bilayers. The binding affinity of a tripodal thiourea-based receptor for anions was assessed at the aqueous|organic interface using electrochemical measurements. A 1 : 1 stoichiometry was determined for the complexation of most anions, with a higher stoichiometry found in the presence of excess Cl- and Br- anions. High stability constants were estimated for the formation of the complexes at the aqueous|1,2-dichlorobenzene (DCB) interface. When compared with an organic solvent of higher polarity, nitrobenzene (NB), the high stability constants observed in DCB are believed to be due to the less competitive environment of the less polar solvent. Protonation of the receptor at the bridgehead tertiary amine was also inferred from the potential-dependent voltammetric measurements that are not related to anion:receptor complexation. The inherent advantages of the electrochemical method with the use of low polarity solvents are expected to provide new insights into the binding and transport of newly-developed neutral receptors.

9.
J Am Chem Soc ; 145(14): 8007-8020, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-36977204

RESUMEN

The unique layered structure of graphite with its tunable interlayer distance establishes almost ideal conditions for the accommodation of ions into its structure. The smooth and chemically inert nature of the graphite surface also means that it is an ideal substrate for electrowetting. Here, we combine these two unique properties of this material by demonstrating the significant effect of anion intercalation on the electrowetting response of graphitic surfaces in contact with concentrated aqueous and organic electrolytes as well as ionic liquids. The structural changes during intercalation/deintercalation were probed using in situ Raman spectroscopy, and the results were used to provide insights into the influence of intercalation staging on the rate and reversibility of electrowetting. We show, by tuning the size of the intercalant and the stage of intercalation, that a fully reversible electrowetting response can be attained. The approach is extended to the development of biphasic (oil/water) systems that exhibit a fully reproducible electrowetting response with a near-zero voltage threshold and unprecedented contact angle variations of more than 120° within a potential window of less than 2 V.

10.
Adv Sci (Weinh) ; 10(14): e2204488, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36951493

RESUMEN

High-entropy (HE) metal chalcogenides are a class of materials that have great potential in applications such as thermoelectrics and electrocatalysis. Layered 2D transition-metal dichalcogenides (TMDCs) are a sub-class of high entropy metal chalcogenides that have received little attention to date as their preparation currently involves complicated, energy-intensive, or hazardous synthetic steps. To address this, a low-temperature (500 °C) and rapid (1 h) single source precursor approach is successfully adopted to synthesize the hexernary high-entropy metal disulfide (MoWReMnCr)S2 . (MoWReMnCr)S2 powders are characterized by powder X-ray diffraction (pXRD) and Raman spectroscopy, which confirmed that the material is comprised predominantly of a hexagonal phase. The surface oxidation states and elemental compositions are studied by X-ray photoelectron spectroscopy (XPS) whilst the bulk morphology and elemental stoichiometry with spatial distribution is determined by scanning electron microscopy (SEM) with elemental mapping information acquired from energy-dispersive X-ray (EDX) spectroscopy. The bulk, layered material is subsequently exfoliated to ultra-thin, several-layer 2D nanosheets by liquid-phase exfoliation (LPE). The resulting few-layer HE (MoWReMnCr)S2 nanosheets are found to contain a homogeneous elemental distribution of metals at the nanoscale by high angle annular dark field-scanning transmission electron microscopy (HAADF-STEM) with EDX mapping. Finally, (MoWReMnCr)S2 is demonstrated as a hydrogen evolution electrocatalyst and compared to 2H-MoS2 synthesized using the molecular precursor approach. (MoWReMnCr)S2 with 20% w/w of high-conductivity carbon black displays a low overpotential of 229 mV in 0.5 M  H2 SO4 to reach a current density of 10 mA cm-2 , which is much lower than the overpotential of 362 mV for MoS2 . From density functional theory calculations, it is hypothesised that the enhanced catalytic activity is due to activation of the basal plane upon incorporation of other elements into the 2H-MoS2 structure, in particular, the first row TMs Cr and Mn.

11.
J Phys Chem C Nanomater Interfaces ; 126(49): 21071-21083, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36561202

RESUMEN

Wetting of carbon surfaces is one of the most widespread, yet poorly understood, physical phenomena. Control over wetting properties underpins the operation of aqueous energy-storage devices and carbon-based filtration systems. Electrowetting, the variation in the contact angle with an applied potential, is the most straightforward way of introducing control over wetting. Here, we study electrowetting directly on graphitic surfaces with the use of aqueous electrolytes to show that reversible control of wetting can be achieved and quantitatively understood using models of the interfacial capacitance. We manifest that the use of highly concentrated aqueous electrolytes induces a fully symmetric and reversible wetting behavior without degradation of the substrate within the unprecedented potential window of 2.8 V. We demonstrate where the classical "Young-Lippmann" models apply, and break down, and discuss reasons for the latter, establishing relations among the applied bias, the electrolyte concentration, and the resultant contact angle. The approach is extended to electrowetting at the liquid|liquid interface, where a concentrated aqueous electrolyte drives reversibly the electrowetting response of an insulating organic phase with a significantly decreased potential threshold. In summary, this study highlights the beneficial effect of highly concentrated aqueous electrolytes on the electrowettability of carbon surfaces, being directly related to the performance of carbon-based aqueous energy-storage systems and electronic and microfluidic devices.

12.
Nanoscale ; 14(28): 10125-10135, 2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35792825

RESUMEN

The development of intrinsically safe and environmentally sustainable energy storage devices is a significant challenge. Recent advances in aqueous rechargeable lithium-ion batteries (ARLIBs) have made considerable steps in this direction. In parallel to the ongoing progress in the design of aqueous electrolytes that expand the electrochemically stable potential window, the design of negative electrode materials exhibiting large capacity and low intercalation potential attracts great research interest. Herein, we report the synthesis of high purity nanoscale Chevrel Phase (CP) Mo6S8via a simple, efficient and controllable molecular precursor approach with significantly decreased energy consumption compared to the conventional approaches. Physical characterization of the obtained product confirms the successful formation of CP-Mo6S8 and reveals that it is crystalline nanostructured in nature. Due to their unique structural characteristics, the Mo6S8 nanocubes exhibit fast kinetics in a 21 m lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) electrolyte as a result of the shorter Li+ ion diffusion distance. Full battery cells comprised of Mo6S8 and LiMn2O4 as negative and positive electrode materials, respectively, operate at 2.23 V delivering a high energy density of 85 W h kg-1 (calculated on the total mass of active materials) under 0.2 C-rate. At 4 C, the coulombic efficiency (CE) is determined to be 99% increasing to near 100% at certain cycles. Post-mortem physical characterization demonstrates that the Mo6S8 anode maintained its crystallinity, thereby exhibiting outstanding cycling stability. The cell outperforms the commonly used vanadium-based (VO2 (B), V2O5) or (NASICON)-type LiTi2(PO4)3 anodes, highlighting the promising character of the nanoscale CP-Mo6S8 as a highly efficient anode material. In summary, the proposed synthetic strategy is expected to stimulate novel research towards the widespread application of CP-based materials in various aqueous and non-aqueous energy storage systems.

13.
ACS Appl Mater Interfaces ; 14(22): 25232-25245, 2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35622978

RESUMEN

Aqueous rechargeable batteries based on aluminum chemistry have become the focus of immense research interest owing to their earth abundance, low cost, and the higher theoretical volumetric energy density of this element compared to lithium-ion batteries. Efforts to harness this huge potential have been hindered by the narrow potential window of water and by passivating effects of the high-electrical band-gap aluminum oxide film. Herein, we report a high-performing aqueous aluminum-ion battery (AIB), which is constructed using a Zn-supported Al alloy, an aluminum bis(trifluoromethanesulfonyl)imide (Al[TFSI]3) electrolyte, and a MnO2 cathode. The use of Al[TFSI]3 significantly extends the voltage window of the electrolyte and enables the cell to access Al3+/Al electrochemistry, while the use of Zn-Al alloy mitigates the issue of surface passivation. The Zn-Al alloy, which is produced by in situ electrochemical deposition, obtained from Al[TFSI]3 showed excellent long-term reversibility for Al electrochemistry and displays the highest performance in AIB when compared to the response obtained in Al2(SO4)3 or aluminum trifluoromethanesulfonate electrolyte. AIB cells constructed using the Zn-Al|Al[TFSI]3|MnO2 combination achieved a record discharge voltage plateau of 1.75 V and a specific capacity of 450 mAh g-1 without significant capacity fade after 400 cycles. These findings will promote the development of energy-dense aqueous AIBs.

14.
Nat Photonics ; 15(7): 493-498, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34221110

RESUMEN

Optical materials with colour-changing abilities have been explored for display devices1, smart windows2,3, or modulation of visual appearance4-6. The efficiency of these materials, however, has strong wavelength dependence, which limits their functionality to a specific spectral range. Here, we report graphene-based electro-optical devices with unprecedented optical tunability covering the entire electromagnetic spectrum from the visible to microwave. We achieve this non-volatile and reversible tunability by electro-intercalation of lithium into graphene layers in an optically accessible device structure. This unique colour-changing capability, together with area-selective intercalation, inspires fabrication of new multispectral devices, including display devices and electro-optical camouflage coating. We anticipate that these results provide realistic approaches for programmable smart optical surfaces with a potential utility in many scientific and engineering fields such as active plasmonics and adaptive thermal management.

15.
Angew Chem Int Ed Engl ; 60(40): 21860-21867, 2021 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-34297479

RESUMEN

In situ electrochemical electron paramagnetic resonance (EPR) spectroscopy is used to understand the mixed lithiation/deposition behavior on graphite anodes during the charging process. The conductivity, degree of lithiation, and the deposition process of the graphite are reflected by the EPR spectroscopic quality factor, the spin density, and the EPR spectral change, respectively. Classical over-charging (normally associated with potentials ≤0 V vs. Li+ /Li) are not required for Li metal deposition onto the graphite anode: Li deposition initiates at ca. +0.04 V (vs. Li+ /Li) when the scan rate is lowered to 0.04 mV s-1 . The inhibition of Li deposition by vinylene carbonate (VC) additive is highlighted by the EPR results during cycling, attributed to a more mechanically flexible and polymeric SEI layer with higher ionic conductivity. A safe cut-off potential limit of +0.05 V for the anode is suggested for high rate cycling, confirmed by the EPR response over prolonged cycling.

16.
Nat Commun ; 12(1): 3092, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34035239

RESUMEN

Membrane-based applications such as osmotic power generation, desalination and molecular separation would benefit from decreasing water friction in nanoscale channels. However, mechanisms that allow fast water flows are not fully understood yet. Here we report angstrom-scale capillaries made from atomically flat crystals and study the effect of confining walls' material on water friction. A massive difference is observed between channels made from isostructural graphite and hexagonal boron nitride, which is attributed to different electrostatic and chemical interactions at the solid-liquid interface. Using precision microgravimetry and ion streaming measurements, we evaluate the slip length, a measure of water friction, and investigate its possible links with electrical conductivity, wettability, surface charge and polarity of the confining walls. We also show that water friction can be controlled using hybrid capillaries with different slip lengths at opposing walls. The reported advances extend nanofluidics' toolkit for designing smart membranes and mimicking manifold machinery of biological channels.

17.
Chem Commun (Camb) ; 57(43): 5294-5297, 2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-33942833

RESUMEN

The high temperature performance of water-in-salt electrolytes was investigated using a carbon-based electrode with commercial cell components. Supercapacitors using 21 m Li bis(trifluoromethylsulphonyl)imide (TFSI) and 21 m LiTFSI + 7 m Li trifluoromethanesulphonyl electrolytes are shown to operate at a voltage of 2 V at 100 °C and 120 °C, respectively, with gravimetric capacitances exceeding 100 F g-1.

18.
ACS Appl Mater Interfaces ; 13(12): 14112-14121, 2021 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-33724772

RESUMEN

The development of rechargeable Zinc-ion batteries (ZIBs) has been hindered by the lack of efficient cathode materials due to the strong binding of divalent zinc ions with the host lattice. Herein, we report a strategy that eliminates the participation of Zn2+ within the cathode chemistry. The approach involves the use of composite cathode materials that contain Zn halides (ZnCl2, ZnBr2, and ZnI2) and carbon (graphite or activated carbon), where the halide ions act both as charge carriers and redox centers while using a Zn2+-conducting water-in-salt gel electrolyte. The use of graphite in the composite electrode produced batterylike behavior, where the voltage plateau was related to the standard potential of the halogen species. When activated carbon was used in the composite, however, the cell acted as a hybrid Zn-ion capacitor due to the fast, reversible halide ion electrosorption/desorption in the carbon pores. The ZnX2-activated carbon composite delivers a capacity of over 400 mAh g-1 and cell energy density of 140 Wh kg-1 while retaining over 95% of its capacity after 500 cycles. The halogen reaction mechanism has been elucidated using combinations of electrochemical and in situ spectroscopic techniques.

19.
ChemSusChem ; 14(7): 1700-1709, 2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33480141

RESUMEN

Aqueous zinc-ion hybrid supercapacitors are a promising energy storage technology, owing to their high safety, low cost, and long-term stability. At present, however, there is a lack of understanding of the potential window and self-discharge of this aqueous energy storage technology. This study concerns a systematic investigation of the potential window of this device by cyclic voltammetry and galvanostatic charge-discharge. Hybrid supercapacitors based on commercial activated carbon (AC) demonstrate a wide and stable potential window (0.2 V to 1.8 V), high specific capacitances (308 F g-1 at 0.5 A g-1 and 110 F g-1 at 30 A g-1 ), good cycling stability (10000 cycles with 95.1 % capacitance retention), and a high energy density (104.8 Wh kg-1 at 383.5 W kg-1 ), based on the active materials. The mechanism involves simultaneous adsorption-desorption of ions on the AC cathode and zinc ion plating/stripping on the Zn anode. This work leads to better understanding of such devices and will aid future development of practical high-performance aqueous zinc-ion hybrid supercapacitors based on commercial carbon materials, thus accelerating the deployment of these hybrid supercapacitors and filling the gap between supercapacitors and batteries.

20.
Nature ; 588(7838): 429-435, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33328664

RESUMEN

Fabrics-materials consisting of layers of woven fibres-are some of the most important materials in everyday life1. Previous nanoscale weaves2-16 include isotropic crystalline covalent organic frameworks12-14 that feature rigid helical strands interlaced in all three dimensions, rather than the two-dimensional17,18 layers of flexible woven strands that give conventional textiles their characteristic flexibility, thinness, anisotropic strength and porosity. A supramolecular two-dimensional kagome weave15 and a single-layer, surface-supported, interwoven two-dimensional polymer16 have also been reported. The direct, bottom-up assembly of molecular building blocks into linear organic polymer chains woven in two dimensions has been proposed on a number of occasions19-23, but has not previously been achieved. Here we demonstrate that by using an anion and metal ion template, woven molecular 'tiles' can be tessellated into a material consisting of alternating aliphatic and aromatic segmented polymer strands, interwoven within discrete layers. Connections between slowly precipitating pre-woven grids, followed by the removal of the ion template, result in a wholly organic molecular material that forms as stacks and clusters of thin sheets-each sheet up to hundreds of micrometres long and wide but only about four nanometres thick-in which warp and weft single-chain polymer strands remain associated through periodic mechanical entanglements within each sheet. Atomic force microscopy and scanning electron microscopy show clusters and, occasionally, isolated individual sheets that, following demetallation, have slid apart from others with which they were stacked during the tessellation and polymerization process. The layered two-dimensional molecularly woven material has long-range order, is birefringent, is twice as stiff as the constituent linear polymer, and delaminates and tears along well-defined lines in the manner of a macroscopic textile. When incorporated into a polymer-supported membrane, it acts as a net, slowing the passage of large ions while letting smaller ions through.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA