Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 353: 120236, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38310800

RESUMEN

Excessive irrigation and nitrogen application have long seriously undermined agricultural sustainability in the North China Plain (NCP), leading to declining groundwater tables and intensified greenhouse gas (GHG) emissions. Developing low-input management practices that meet the growing food demand while reducing environmental costs is urgently needed. Here, we developed a novel nitrogen management strategy for a typical winter wheat-summer maize rotation system in the NCP under limited irrigation (wheat sowing irrigation only (W0) or sowing and jointing irrigation (W1)) and low nitrogen input (360 kg N ha-1, about 70 % of traditional annual nitrogen input). Novel nitrogen management strategy promoted efficient nitrogen fertilizer uptake and utilization by both crops via optimization of nitrogen fertilizer allocation between the two crops, i.e., increasing nitrogen inputs to wheat (from 180 to 240 kg N ha-1) while reducing nitrogen inputs to maize (from 180 to 120 kg N ha-1). Three-year field study demonstrated that integrated management practices combining novel nitrogen management strategy with limited irrigation increased annual yields and PFPN by 1.9-5.7 %, and reduced TGE by 55-68 kg CO2-eq ha-1 and GHGI by 2.2-10.3 %, without any additional cost. Our results provide agricultural operators and policymakers with practical and easy-to-scalable integrated management strategy, and offer key initiative to promote grain production in the NCP towards agriculture sustainable intensification with high productivity and efficiency, water conservation and emission reduction.


Asunto(s)
Gases de Efecto Invernadero , Gases de Efecto Invernadero/análisis , Triticum , Zea mays , Nitrógeno/análisis , Fertilizantes , Agricultura/métodos , China , Suelo
2.
Appl Microbiol Biotechnol ; 107(23): 7347-7364, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37747613

RESUMEN

Plant roots and rhizosphere soils assemble diverse microbial communities, and these root-associated microbiomes profoundly influence host development. Modern wheat has given rise to numerous cultivars for its wide range of ecological adaptations and commercial uses. Variations in nitrogen uptake by different wheat cultivars are widely observed in production practices. However, little is known about the composition and structure of the root-associated microbiota in different wheat cultivars, and it is not sure whether root-associated microbial communities are relevant in host nitrogen absorption. Therefore, there is an urgent need for systematic assessment of root-associated microbial communities and their association with host nitrogen absorption in field-grown wheat. Here, we investigated the root-associated microbial community composition, structure, and keystone taxa in wheat cultivars with different nitrogen absorption characteristics at different stages and their relationships with edaphic variables and host nitrogen uptake. Our results indicated that cultivar nitrogen absorption characteristics strongly interacted with bacterial and archaeal communities in the roots and edaphic physicochemical factors. The impact of host cultivar identity, developmental stage, and spatial niche on bacterial and archaeal community structure and network complexity increased progressively from rhizosphere soils to roots. The root microbial community had a significant direct effect on plant nitrogen absorption, while plant nitrogen absorption and soil temperature also significantly influenced root microbial community structure. The cultivar with higher nitrogen absorption at the jointing stage tended to cooperate with root microbial community to facilitate their own nitrogen absorption. Our work provides important information for further wheat microbiome manipulation to influence host nitrogen absorption. KEY POINTS: • Wheat cultivar and developmental stage affected microbiome structure and network. • The root microbial community strongly interacted with plant nitrogen absorption. • High nitrogen absorption cultivar tended to cooperate with root microbiome.


Asunto(s)
Microbiota , Triticum , Triticum/microbiología , Nitrógeno , Raíces de Plantas/microbiología , Microbiología del Suelo , Suelo/química , Bacterias , Archaea , Rizosfera
3.
Artículo en Inglés | MEDLINE | ID: mdl-37155399

RESUMEN

OBJECTIVE: Improving the Information Transfer Rate (ITR) is a popular research topic in steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs). The higher recognition accuracy of short-time SSVEP signal is critical to improving ITR and achieving high-speed SSVEP-BCIs. However, the existing algorithms have unsatisfactory performance on recognizing short-time SSVEP signals, especially for calibration-free methods. METHOD: This study for the first time proposed improving the recognition accuracy of short-time SSVEP signals based on the calibration-free method by extending the SSVEP signal length. A signal extension model based on Multi-channel adaptive Fourier decomposition with different Phase (DP-MAFD) is proposed to achieve signal extension. Then the Canonical Correlation Analysis based on signal extension (SE-CCA) is proposed to complete the recognition and classification of SSVEP signals after extension. RESULT: The similarity study and SNR comparison analysis on public SSVEP datasets demonstrate that the proposed signal extension model has the ability to extend SSVEP signals. The classification results show that the proposed method outperforms Canonical Correlation Analysis (CCA) and Filter Bank Canonical Correlation Analysis (FBCCA) significantly in the measure of classification accuracy and information transmission rate (ITR), especially for short-time signals. The highest ITR of SE-CCA is improved to 175.61 bits/min at around 1s, while CCA is 100.55 bits/min at 1.75s and FBCCA is 141.76 bits/min at 1.25s. CONCLUSION: The signal extension method can improve the recognition accuracy of short-time SSVEP signals and further improve the ITR of SSVEP-BCIs.


Asunto(s)
Interfaces Cerebro-Computador , Potenciales Evocados Visuales , Humanos , Electroencefalografía/métodos , Estimulación Luminosa , Reconocimiento en Psicología , Algoritmos
4.
Artículo en Inglés | MEDLINE | ID: mdl-37067974

RESUMEN

Steady-state visual evoked potential (SSVEP) signal collected from the scalp typically contains other types of electric signals, and it is important to remove these noise components from the actual signal by application of a pre-processing step for accurate analysis. High-pass or bandpass filtering of the SSVEP signal in the time domain is the most common pre-processing method. Because frequency is the most important feature information contained in the SSVEP signal, a technique for frequency-domain filtering of SSVEP was proposed here. In this method, the time-domain signal is extended to multi-dimensional signal by empirical mode decomposition (EMD), where each dimension represents a intrinsic mode function (IMF). The multi-dimensional signal is transformed to a frequency-domain signal by 2-D Fourier transform, the Gaussian high-pass filter function is constructed to perform high-pass filtering, and then the filtered signal is transformed to time domain by 2-D inverse Fourier transform. Finally, the filtered multi-dimensional intrinsic mode function is superimposed and averaged as the frequency-domain filtered signal. Compared with the time-domain filtering method, the experimental results revealed that frequency-domain filtering method effectively removed the baseline drift in signal and effectively suppressed the low-frequency interference component. This method was tested using data from public datasets and the results show that the proposed frequency-domain filtering method can significantly improve the feature recognition performance of canonical correlation analysis (CCA), filter bank canonical correlation analysis (FBCCA), and task-related component analysis (TRCA) methods. Thus, the results suggest that the application of frequency-domain filtering in the pre-processing stage allows improved noise removal. The proposed method extends SSVEP signal filtering from time-domain to frequency-domain, and the results suggest that this analysis tool significantly promotes the practical application of SSVEP systems.


Asunto(s)
Interfaces Cerebro-Computador , Potenciales Evocados Visuales , Humanos , Electroencefalografía/métodos , Algoritmos , Reconocimiento en Psicología , Estimulación Luminosa/métodos
5.
Sensors (Basel) ; 22(16)2022 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-36016044

RESUMEN

As a novel form of visual analysis technique, the Poincaré plot has been used to identify correlation patterns in time series that cannot be detected using traditional analysis methods. In this work, based on the nonextensive of EEG, Poincaré plot nonextensive distribution entropy (NDE) is proposed to solve the problem of insufficient discrimination ability of Poincaré plot distribution entropy (DE) in analyzing fractional Brownian motion time series with different Hurst indices. More specifically, firstly, the reasons for the failure of Poincaré plot DE in the analysis of fractional Brownian motion are analyzed; secondly, in view of the nonextensive of EEG, a nonextensive parameter, the distance between sector ring subintervals from the original point, is introduced to highlight the different roles of each sector ring subinterval in the system. To demonstrate the usefulness of this method, the simulated time series of the fractional Brownian motion with different Hurst indices were analyzed using Poincaré plot NDE, and the process of determining the relevant parameters was further explained. Furthermore, the published sleep EEG dataset was analyzed, and the results showed that the Poincaré plot NDE can effectively reflect different sleep stages. The obtained results for the two classes of time series demonstrate that the Poincaré plot NDE provides a prospective tool for single-channel EEG time series analysis.


Asunto(s)
Electroencefalografía , Proyectos de Investigación , Entropía , Frecuencia Cardíaca , Factores de Tiempo
6.
J Neural Eng ; 19(4)2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35850094

RESUMEN

Objective.Steady-state visual evoked potential (SSVEP) training feature recognition algorithms utilize user training data to reduce the interference of spontaneous electroencephalogram activities on SSVEP response for improved recognition accuracy. The data collection process can be tedious, increasing the mental fatigue of users and also seriously affecting the practicality of SSVEP-based brain-computer interface (BCI) systems.Approach. As an alternative, a cross-subject spatial filter transfer (CSSFT) method to transfer an existing user data model with good SSVEP response to new user test data has been proposed. The CSSFT method uses superposition averages of data for multiple blocks of data as transfer data. However, the amplitude and pattern of brain signals are often significantly different across trials. The goal of this study was to improve superposition averaging for the CSSFT method and propose anEnsemblescheme based on ensemble learning, and anExpansionscheme based on matrix expansion.Main results. The feature recognition performance was compared for CSSFT and the proposed improved CSSFT method using two public datasets. The results demonstrated that the improved CSSFT method can significantly improve the recognition accuracy and information transmission rate of existing methods.Significance.This strategy avoids a tedious data collection process, and promotes the potential practical application of BCI systems.


Asunto(s)
Interfaces Cerebro-Computador , Potenciales Evocados Visuales , Algoritmos , Mapeo Encefálico , Electroencefalografía/métodos , Estimulación Luminosa
7.
Sensors (Basel) ; 22(11)2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35684700

RESUMEN

Nowadays, more people tend to go to bed late and spend their sleep time with various electronic devices. At the same time, the BCI (brain−computer interface) rehabilitation equipment uses a visual display, thus it is necessary to evaluate the problem of visual fatigue to avoid the impact on the training effect. Therefore, it is very important to understand the impact of using electronic devices in a dark environment at night on human visual fatigue. This paper uses Matlab to write different color paradigm stimulations, uses a 4K display with an adjustable screen brightness to jointly design the experiment, uses eye tracker and g.tec Electroencephalogram (EEG) equipment to collect the signal, and then carries out data processing and analysis, finally obtaining the influence of the combination of different colors and different screen brightness on human visual fatigue in a dark environment. In this study, subjects were asked to evaluate their subjective (Likert scale) perception, and objective signals (pupil diameter, θ + α frequency band data) were collected in a dark environment (<3 lx). The Likert scale showed that a low screen brightness in the dark environment could reduce the visual fatigue of the subjects, and participants preferred blue to red. The pupil data revealed that visual perception sensitivity was more vulnerable to stimulation at a medium and high screen brightness, which is easier to deepen visual fatigue. EEG frequency band data concluded that there was no significant difference between paradigm colors and screen brightness on visual fatigue. On this basis, this paper puts forward a new index­the visual anti-fatigue index, which provides a valuable reference for the optimization of the indoor living environment, the improvement of satisfaction with the use of electronic equipment and BCI rehabilitation equipment, and the protection of human eyes.


Asunto(s)
Astenopía , Interfaces Cerebro-Computador , Electroencefalografía , Humanos , Pupila/fisiología , Percepción Visual
8.
J Neural Eng ; 19(3)2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35483331

RESUMEN

Objective.Steady-state visual evoked potential (SSVEP) is an important control method of the brain-computer interface (BCI) system. The development of an efficient SSVEP feature decoding algorithm is the core issue in SSVEP-BCI. It has been proposed to use user training data to reduce the spontaneous electroencephalogram activity interference on SSVEP response, thereby improving the feature recognition accuracy of the SSVEP signal. Nevertheless, the tedious data collection process increases the mental fatigue of the user and severely affects the applicability of the BCI system.Approach.A cross-subject spatial filter transfer (CSSFT) method that transfer the existing user model with good SSVEP response to the new user test data without collecting any training data from the new user is proposed.Main results.Experimental results demonstrate that the transfer model increases the distinction of the feature discriminant coefficient between the gaze following target and the non-gaze following target and accurately identifies the wrong target in the fundamental algorithm model. The public datasets show that the CSSFT method significantly increases the recognition performance of canonical correlation analysis (CCA) and filter bank CCA. Additionally, when the data used to calculate the transfer model contains one data block only, the CSSFT method retains its effective feature recognition capabilities.Significance.The proposed method requires no tedious data calibration process for new users, provides an effective technical solution for the transfer of the cross-subject model, and has potential application value for promoting the application of the BCI system.


Asunto(s)
Interfaces Cerebro-Computador , Potenciales Evocados Visuales , Algoritmos , Electroencefalografía/métodos , Estimulación Luminosa
9.
J Neural Eng ; 18(5)2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34571497

RESUMEN

Objective.Motor imagery (MI), based on the theory of mirror neurons and neuroplasticity, can promote motor cortical activation in neurorehabilitation. The strategy of MI based on brain-computer interface (BCI) has been used in rehabilitation training and daily assistance for patients with hemiplegia in recent years. However, it is difficult to maintain the consistency and timeliness of receiving external stimulation to neural activation in most subjects owing to the high variability of electroencephalogram (EEG) representation across trials/subjects. Moreover, in practical application, MI-BCI cannot highly activate the motor cortex and provide stable interaction owing to the weakness of the EEG feature and lack of an effective mode of activation.Approach.In this study, a novel hybrid BCI paradigm based on MI and vestibular stimulation motor imagery (VSMI) was proposed to enhance the capability of feature response for MI. Twelve subjects participated in a group of controlled experiments containing VSMI and MI. Three indicators, namely, activation degree, timeliness, and classification accuracy, were adopted to evaluate the performance of the task.Main results.Vestibular stimulation could significantly strengthen the suppression ofαandßbands of contralateral brain regions during MI, that is, enhance the activation degree of the motor cortex (p< 0.01). Compared with MI, the timeliness of EEG feature-response achieved obvious improvements in VSMI experiments. Moreover, the averaged classification accuracy of VSMI and MI was 80.56% and 69.38%, respectively.Significance.The experimental results indicate that specific vestibular activity contributes to the oscillations of the motor cortex and has a positive effect on spontaneous imagery, which provides a novel MI paradigm and enables the preliminary exploration of sensorimotor integration of MI.


Asunto(s)
Interfaces Cerebro-Computador , Neuronas Espejo , Electroencefalografía , Humanos , Imágenes en Psicoterapia , Imaginación
10.
Front Neurosci ; 15: 716051, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34489633

RESUMEN

The purpose of this study was to enhance the performance of steady-state visual evoked potential (SSVEP)-based visual acuity assessment with spatial filtering methods. Using the vertical sinusoidal gratings at six spatial frequency steps as the visual stimuli for 11 subjects, SSVEPs were recorded from six occipital electrodes (O1, Oz, O2, PO3, POz, and PO4). Ten commonly used training-free spatial filtering methods, i.e., native combination (single-electrode), bipolar combination, Laplacian combination, average combination, common average reference (CAR), minimum energy combination (MEC), maximum contrast combination (MCC), canonical correlation analysis (CCA), multivariate synchronization index (MSI), and partial least squares (PLS), were compared for multielectrode signals combination in SSVEP visual acuity assessment by statistical analyses, e.g., Bland-Altman analysis and repeated-measures ANOVA. The SSVEP signal characteristics corresponding to each spatial filtering method were compared, determining the chosen spatial filtering methods of CCA and MSI with a higher performance than the native combination for further signal processing. After the visual acuity threshold estimation criterion, the agreement between the subjective Freiburg Visual Acuity and Contrast Test (FrACT) and SSVEP visual acuity for the native combination (0.253 logMAR), CCA (0.202 logMAR), and MSI (0.208 logMAR) was all good, and the difference between FrACT and SSVEP visual acuity was also all acceptable for the native combination (-0.095 logMAR), CCA (0.039 logMAR), and MSI (-0.080 logMAR), where CCA-based SSVEP visual acuity had the best performance and the native combination had the worst. The study proved that the performance of SSVEP-based visual acuity can be enhanced by spatial filtering methods of CCA and MSI and also recommended CCA as the spatial filtering method for multielectrode signals combination in SSVEP visual acuity assessment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...