Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(4)2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38399918

RESUMEN

Aniline compounds, as a class of widely used but highly toxic chemical raw materials, are increasingly being released and accumulated in the environment, posing serious threats to environmental safety and human health. Therefore, developing detection methods for aniline compounds is of particular significance. Herein, we synthesized the fluorescent third monomer cyano-stilbene epoxide M and ternary copolymerized it with carbon dioxide (CO2) and propylene oxide (PO) to synthesize carbon dioxide-based polycarbonate (PPCM) with fluorescence recognition functions, as well as excellent performance, for the first time. The results revealed that the PPCM fluorescent probe exhibited typical aggregation-induced luminescence properties and could be quenched by aniline compounds. The probe presented anti-interference-specific selectivity for aniline compounds, and the detection limit was 1.69 × 10-4 M. Moreover, it was found to be a highly sensitive aniline detection probe. At the same time, the aniline biomarker p-aminophenol in urine could also be detected, which could expand the potential applications of polymers in the fluorescence-sensing field.

2.
Anal Bioanal Chem ; 406(28): 7221-31, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25260404

RESUMEN

Thermal preparation of lysozyme-imprinted microspheres was firstly investigated by using biocompatible ionic liquid (IL) as a thermal stabilizer. The imprinted microspheres made with IL could obtain the good recognition ability to template protein, whereas the imprinted polymer synthesized in the absence of it had a similar adsorption capacity to the non-imprinted one. Furthermore, the preparation conditions of imprinted polymers (MIPs) including the content of IL, temperature of polymerization, and types of functional monomers and crosslinkers were systematically analyzed via circular dichroism spectrum and activity assay. The results illustrated that using hydroxyethyl acrylate as the functional monomer, ethylene glycol dimethacrylate as the crosslinker, 5 % IL as the stabilizer, and 75 °C as the reaction temperature could retain the structure of template protein as much as possible. The obtained MIPs showed excellent recognition ability to the template protein with the separation factor and selectivity factor value of 4.30 and 2.21, respectively. Consequently, it is an effective way to accurately imprint and separate template protein by cooperatively using circular dichroism spectroscopy and activity assay during the preparation of protein MIPs. The method of utilizing IL to stabilizing protein at high temperature would offer a good opportunity for various technologies to improve the development of macromolecules imprinting.


Asunto(s)
Líquidos Iónicos , Microesferas , Impresión Molecular , Muramidasa/química , Muramidasa/metabolismo , Animales , Pollos , Dicroismo Circular , Polímeros , Extracción en Fase Sólida , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA