Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Infect Dis Poverty ; 13(1): 54, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38982550

RESUMEN

BACKGROUND: Rickettsia and related diseases have been identified as significant global public health threats. This study involved comprehensive field and systematic investigations of various rickettsial organisms in Yunnan Province. METHODS: Between May 18, 2011 and November 23, 2020, field investigations were conducted across 42 counties in Yunnan Province, China, encompassing small mammals, livestock, and ticks. Preliminary screenings for Rickettsiales involved amplifying the 16S rRNA genes, along with additional genus- or species-specific genes, which were subsequently confirmed through sequencing results. Sequence comparisons were carried out using the Basic Local Alignment Search Tool (BLAST). Phylogenetic relationships were analyzed using the default parameters in the Molecular Evolutionary Genetics Analysis (MEGA) program. The chi-squared test was used to assess the diversities and component ratios of rickettsial agents across various parameters. RESULTS: A total of 7964 samples were collected from small mammals, livestock, and ticks through Yunnan Province and submitted for screening for rickettsial organisms. Sixteen rickettsial species from the genera Rickettsia, Anaplasma, Ehrlichia, Neoehrlichia, and Wolbachia were detected, with an overall prevalence of 14.72%. Among these, 11 species were identified as pathogens or potential pathogens to humans and livestock. Specifically, 10 rickettsial organisms were widely found in 42.11% (24 out of 57) of small mammal species. High prevalence was observed in Dremomys samples at 5.60%, in samples from regions with latitudes above 4000 m or alpine meadows, and in those obtained from Yuanmou County. Anaplasma phagocytophilum and Candidatus Neoehrlichia mikurensis were broadly infecting multiple genera of animal hosts. In contrast, the small mammal genera Neodon, Dremomys, Ochotona, Anourosorex, and Mus were carrying individually specific rickettsial agents, indicating host tropism. There were 13 rickettsial species detected in 57.14% (8 out of 14) of tick species, with the highest prevalence (37.07%) observed in the genus Rhipicephalus. Eight rickettsial species were identified in 2375 livestock samples. Notably, six new Rickettsiales variants/strains were discovered, and Candidatus Rickettsia longicornii was unambiguously identified. CONCLUSIONS: This large-scale survey provided further insight into the high genetic diversity and overall prevalence of emerging Rickettsiales within endemic hotspots in Yunnan Province. The potential threats posed by these emerging tick-borne Rickettsiales to public health warrant attention, underscoring the need for effective strategies to guide the prevention and control of emerging zoonotic diseases in China.


Asunto(s)
Variación Genética , Filogenia , Rickettsiales , Garrapatas , China/epidemiología , Animales , Prevalencia , Rickettsiales/genética , Rickettsiales/aislamiento & purificación , Rickettsiales/clasificación , Garrapatas/microbiología , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/análisis , Ganado/microbiología , Infecciones por Rickettsia/epidemiología , Infecciones por Rickettsia/microbiología , Infecciones por Rickettsia/veterinaria , Rickettsia/aislamiento & purificación , Rickettsia/genética , Rickettsia/clasificación , Mamíferos/microbiología , Humanos
2.
One Health ; 18: 100735, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38711479

RESUMEN

Background: Borrelia miyamotoi is a spirochete species transmitted via hard ticks. Following its discovery in Japan, this pathogen has been detected around the world, and is increasingly confirmed as a human pathogen causing febrile disease, namely relapsing fever. Its presence has been confirmed in the Northeast China. However, there is little information regarding the presence of B. miyamotoi and other hard-tick-borne relapsing fever spirochetes in southern China including Yunnan province, where tick and animal species are abundant and many people both inhabit and visit for recreation. Methods: For the present study, we collected samples of ticks, wildlife, and domestic animal hosts from different counties in Yunnan province. Nucleic acids from samples were extracted, and the presence of B. miyamotoi and other relapsing fever spirochetes was confirmed using polymerase chain reaction (PCR) for the 16S rRNA specific target gene fragment. The positive samples were then amplified for partial genome of the flaB and glpQ genes. Statistical differences in its distribution were analyzed by SPSS 20 software. Sequence of partial 16S rRNA, flaB and glpQ genome were analyzed and phylogenetic trees were constructed. Results: A total of 8260 samples including 2304 ticks, 4120 small mammals and 1836 blood of domestic animal hosts were collected for screening for infection of B. miyamotoi and other relapsing fever spirochetes. Cattle and sheep act as the main hosts and Rhipicephalus microplus, Haemaphysalis nepalensis, H. kolonini and Ixodes ovatus were identified as the important vector host with high prevalence or wide distribution. Only one Mus caroli (mouse) and one Sorex alpinus (shrew) were confirmed positive for relapsing fever spirochetes. Evidence of vertical transmission in ticks was also confirmed. Two known strains of B. miyamotoi and one novel relapsing fever spirochetes, B. theileri-like agent, were confirmed and described with their host adaptation, mutation, and potential risk of spreading and spillover for human beings. Conclusions: Our results provide new evidence of relapsing fever spirochetes in vector and animal hosts in Yunnan province based on large sample sizes, and offer guidance on further investigation, surveillance and monitoring of this pathogen.

3.
Mitochondrial DNA B Resour ; 9(4): 551-556, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38686316

RESUMEN

We conducted an analysis of the complete mitochondrial genome of Rhipicephalus haemaphysaloides, a tick species known for transmitting various bacteria and viruses. The mitochondrial genome of R. haemaphysaloides has a length of 14,739 bp and consists of 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), 2 ribosomal RNA genes (rRNAs), and 2 control regions. By utilizing the maximum likelihood method, we established the phylogenetic relationship among R. haemaphysaloides and other species within the Rhipicephalus genus of the Ixodidae family. This analysis revealed that R. haemaphysaloides and other Rhipicephalus species belong to the same clade, further affirming the taxonomic placement of R. haemaphysaloides within the Rhipicephalus genus. Furthermore, we compared the mitochondrial genomes of R. haemaphysaloides isolates from Changning, Yunnan Province, China, with isolates from Yangxin, Ganzhou, and Yingtan, Hubei Province, China. In summary, our investigation offers genetic proof endorsing the taxonomic categorization and phylogenetic placement of Ixodidae by assessing the entire mitochondrial genome of R. haemaphysaloides.

4.
Parasit Vectors ; 17(1): 147, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38515113

RESUMEN

BACKGROUND: The elimination of schistosomiasis remains a challenging task, with current measures primarily focused on the monitoring and control of Oncomelania hupensis (O. hupensis) snail, the sole intermediate host of Schistosome japonicum. Given the emerging, re-emerging, and persistent habitats of snails, understanding their genetic diversity might be essential for their successful monitoring and control. The aims of this study were to analyze the genetic diversity of Oncomelania hupensis robertsoni (O. h. robertsoni) using microsatellite DNA markers; and validate the applicability of previously identified microsatellite loci for O. hupensis in hilly regions. METHODS: A total of 17 populations of O. h. robertsoni from Yunnan Province in China were selected for analysis of genetic diversity using six microsatellite DNA polymorphic loci (P82, P84, T4-22, T5-11, T5-13, and T6-27). RESULTS: The number of alleles among populations ranged from 0 to 19, with an average of 5. The average ranges of expected (He) and observed (Ho) heterozygosity within populations were 0.506 to 0.761 and 0.443 to 0.792, respectively. The average fixation index within the population ranged from - 0.801 to 0.211. The average polymorphic information content (PIC) within the population ranged from 0.411 to 0.757, appearing to be polymorphic for all loci (all PIC > 0.5), except for P28 and P48. A total of 68 loci showed significant deviations from Hardy-Weinberg equilibrium (P < 0.05), and pairwise Fst values ranged from 0.051 to 0.379. The analysis of molecular variance indicated that 88% of the variation occurred within snail populations, whereas 12% occurred among snail populations. Phylogenetic trees and principal coordinate analysis revealed two distinct clusters within the snail population, corresponding to "Yunnan North" and "Yunnan South". CONCLUSIONS: O. h. robertsoni exhibited a relatively high level of genetic differentiation, with variation chiefly existing within snail populations. All snail in this region could be separated into two clusters. The microsatellite loci P82 and P84 might not be suitable for classification studies of O. hupensis in hilly regions. These findings provided important information for the monitoring and control of snail, and for further genetic diversity studies on snail populations.


Asunto(s)
Gastrópodos , Schistosoma japonicum , Animales , Schistosoma japonicum/genética , Filogenia , China/epidemiología , Repeticiones de Microsatélite , ADN , Variación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...