Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(18): eadk8495, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38691598

RESUMEN

Optically active spin defects in wide bandgap semiconductors serve as a local sensor of multiple degrees of freedom in a variety of "hard" and "soft" condensed matter systems. Taking advantage of the recent progress on quantum sensing using van der Waals (vdW) quantum materials, here we report direct measurements of spin waves excited in magnetic insulator Y3Fe5O12 (YIG) by boron vacancy [Formula: see text] spin defects contained in few-layer-thick hexagonal boron nitride nanoflakes. We show that the ferromagnetic resonance and parametric spin excitations can be effectively detected by [Formula: see text] spin defects under various experimental conditions through optically detected magnetic resonance measurements. The off-resonant dipole interaction between YIG magnons and [Formula: see text] spin defects is mediated by multi-magnon scattering processes, which may find relevant applications in a range of emerging quantum sensing, computing, and metrology technologies. Our results also highlight the opportunities offered by quantum spin defects in layered two-dimensional vdW materials for investigating local spin dynamic behaviors in magnetic solid-state matters.

2.
J Phys Condens Matter ; 36(36)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38565125

RESUMEN

Magnonicsis a research field that has gained an increasing interest in both the fundamental and applied sciences in recent years. This field aims to explore and functionalize collective spin excitations in magnetically ordered materials for modern information technologies, sensing applications and advanced computational schemes. Spin waves, also known as magnons, carry spin angular momenta that allow for the transmission, storage and processing of information without moving charges. In integrated circuits, magnons enable on-chip data processing at ultrahigh frequencies without the Joule heating, which currently limits clock frequencies in conventional data processors to a few GHz. Recent developments in the field indicate that functional magnonic building blocks for in-memory computation, neural networks and Ising machines are within reach. At the same time, the miniaturization of magnonic circuits advances continuously as the synergy of materials science, electrical engineering and nanotechnology allows for novel on-chip excitation and detection schemes. Such circuits can already enable magnon wavelengths of 50 nm at microwave frequencies in a 5G frequency band. Research into non-charge-based technologies is urgently needed in view of the rapid growth of machine learning and artificial intelligence applications, which consume substantial energy when implemented on conventional data processing units. In its first part, the 2024 Magnonics Roadmap provides an update on the recent developments and achievements in the field of nano-magnonics while defining its future avenues and challenges. In its second part, the Roadmap addresses the rapidly growing research endeavors on hybrid structures and magnonics-enabled quantum engineering. We anticipate that these directions will continue to attract researchers to the field and, in addition to showcasing intriguing science, will enable unprecedented functionalities that enhance the efficiency of alternative information technologies and computational schemes.

3.
ACS Nano ; 17(24): 25689-25696, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38050827

RESUMEN

Effective control and readout of qubits form the technical foundation of next-generation, transformative quantum information sciences and technologies. The nitrogen-vacancy (NV) center, an intrinsic three-level spin system, is naturally relevant in this context due to its excellent quantum coherence, high fidelity of operations, and remarkable functionality over a broad range of experimental conditions. It is an active contender for the development and implementation of cutting-edge quantum technologies. Here, we report magnetic domain wall motion driven local control and measurements of the NV spin properties. By engineering the local magnetic field environment of an NV center via nanoscale reconfigurable domain wall motion, we show that NV photoluminescence, spin level energies, and coherence time can be reliably controlled and correlated to the magneto-transport response of a magnetic device. Our results highlight the electrically tunable dipole interaction between NV centers and nanoscale magnetic structures, providing an attractive platform to realize interactive information transfer between spin qubits and nonvolatile magnetic memory in hybrid quantum spintronic systems.

4.
Nano Lett ; 23(17): 8099-8105, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37656017

RESUMEN

van der Waals (vdW) magnets, an emerging family of two-dimensional (2D) materials, have received tremendous attention due to their rich fundamental physics and significant potential for cutting-edge technological applications. In contrast to the conventional bulk counterparts, vdW magnets exhibit significant tunability of local material properties, such as stacking engineered interlayer coupling and layer-number dependent magnetic and electronic interactions, which promise to deliver previously unavailable merits to develop multifunctional microelectronic devices. As a further ingredient of this emerging topic, here we report nanoscale quantum sensing and imaging of the atomically thin vdW magnet chromium thiophosphate CrPS4, revealing its characteristic layer-dependent 2D static magnetism and dynamic spin fluctuations. We also show a large tunneling magnetoresistance in CrPS4-based spin filter vdW heterostructures. The excellent material stability and robust strategy against environmental degradation in combination with tailored magnetic properties highlight the potential of CrPS4 in developing state-of-the-art 2D spintronic devices for next-generation information technologies.

5.
Nat Commun ; 14(1): 5259, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37644000

RESUMEN

Moiré magnetism featured by stacking engineered atomic registry and lattice interactions has recently emerged as an appealing quantum state of matter at the forefront of condensed matter physics research. Nanoscale imaging of moiré magnets is highly desirable and serves as a prerequisite to investigate a broad range of intriguing physics underlying the interplay between topology, electronic correlations, and unconventional nanomagnetism. Here we report spin defect-based wide-field imaging of magnetic domains and spin fluctuations in twisted double trilayer (tDT) chromium triiodide CrI3. We explicitly show that intrinsic moiré domains of opposite magnetizations appear over arrays of moiré supercells in low-twist-angle tDT CrI3. In contrast, spin fluctuations measured in tDT CrI3 manifest little spatial variations on the same mesoscopic length scale due to the dominant driving force of intralayer exchange interaction. Our results enrich the current understanding of exotic magnetic phases sustained by moiré magnetism and highlight the opportunities provided by quantum spin sensors in probing microscopic spin related phenomena on two-dimensional flatland.

6.
Science ; 381(6654): 181-186, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37319246

RESUMEN

Quantum geometry in condensed-matter physics has two components: the real part quantum metric and the imaginary part Berry curvature. Whereas the effects of Berry curvature have been observed through phenomena such as the quantum Hall effect in two-dimensional electron gases and the anomalous Hall effect (AHE) in ferromagnets, the quantum metric has rarely been explored. Here, we report a nonlinear Hall effect induced by the quantum metric dipole by interfacing even-layered MnBi2Te4 with black phosphorus. The quantum metric nonlinear Hall effect switches direction upon reversing the antiferromagnetic (AFM) spins and exhibits distinct scaling that is independent of the scattering time. Our results open the door to discovering quantum metric responses predicted theoretically and pave the way for applications that bridge nonlinear electronics with AFM spintronics.

7.
Nano Lett ; 23(11): 5326-5333, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37219013

RESUMEN

Noncollinear antiferromagnets with novel magnetic orders, vanishingly small net magnetization, and exotic spin related properties hold enormous promise for developing next-generation, transformative spintronic applications. A major ongoing research focus of this community is to explore, control, and harness unconventional magnetic phases of this emergent material system to deliver state-of-the-art functionalities for modern microelectronics. Here we report direct imaging of magnetic domains of polycrystalline Mn3Sn films, a prototypical noncollinear antiferromagnet, using nitrogen-vacancy-based single-spin scanning microscopy. Nanoscale evolution of local stray field patterns of Mn3Sn samples are systematically investigated in response to external driving forces, revealing the characteristic "heterogeneous" magnetic switching behaviors in polycrystalline textured Mn3Sn films. Our results contribute to a comprehensive understanding of inhomogeneous magnetic orders of noncollinear antiferromagnets, highlighting the potential of nitrogen-vacancy centers to study microscopic spin properties of a broad range of emergent condensed matter systems.

8.
Nat Commun ; 13(1): 5369, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36100604

RESUMEN

Emergent color centers with accessible spins hosted by van der Waals materials have attracted substantial interest in recent years due to their significant potential for implementing transformative quantum sensing technologies. Hexagonal boron nitride (hBN) is naturally relevant in this context due to its remarkable ease of integration into devices consisting of low-dimensional materials. Taking advantage of boron vacancy spin defects in hBN, we report nanoscale quantum imaging of low-dimensional ferromagnetism sustained in Fe3GeTe2/hBN van der Waals heterostructures. Exploiting spin relaxometry methods, we have further observed spatially varying magnetic fluctuations in the exfoliated Fe3GeTe2 flake, whose magnitude reaches a peak value around the Curie temperature. Our results demonstrate the capability of spin defects in hBN of investigating local magnetic properties of layered materials in an accessible and precise way, which can be extended readily to a broad range of miniaturized van der Waals heterostructure systems.

9.
Transl Cancer Res ; 11(7): 2299-2309, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35966295

RESUMEN

Background: Sepsis-associated encephalopathy (SAE) is characterized by the activation of inflammatory cascades, in which microglia play a key role. The activation of Recombinant Sirtuin 3 (SIRT3) was shown to significantly reduce the susceptibility of microglia to inflammatory stress. The purpose of this study is to determine whether miRNA-494 can regulate the activation and oxidative stress of SAE microglia through SIRT3. Methods: An SAE rat model was established, and the expression of Ionized calcium bindingadaptor molecule-1 (Iba-1) in rat brain tissue was detected by immunohistochemistry. Enzyme-linked immuno sorbent assay was performed to detect the expression of tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) in brain tissue. Real time quantitative PCR was performed to detect the relative expression of SIRT3 and related miRNAs, while Western blot was used to detect the protein expression of SIRT3. Rat microglia cells were cultured in vitro. After miRNA-494 was transfected, the expression of TNF-α and IL-6 was detected. Western blot was used to detect the protein expression of SIRT3 and Iba-1 in microglia. Results: The results showed that the expression of Iba-1 in the brain tissue of the SAE model group increased, and the expression of inflammatory factors TNF-α and IL-6 increased significantly (P<0.01). The expression of SIRT3 protein and mRNA in the brain tissue of the SAE model group also significantly increased (P<0.05). The relative expression of miRNA-494 in the SAE model group was significantly lower than that in the control group (P<0.01). After miRNA-494 was transfected into microglia, cells were treated with lipopolysaccharide. In the miRNA transfection group, the expression levels of TNF-α and IL-6 were significantly lower than those in the negative control (NC) group (P<0.01), and the protein expression levels of Iba-1 and SIRT3 were also significantly lower than those in the NC (P<0.01). Conclusions: MiRNA-494 may further regulate the activation of microglia in SAE by regulating mitochondrial function, providing basic research data for the development of new SAE treatment methods.

10.
Nano Lett ; 22(14): 5810-5817, 2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35816128

RESUMEN

Topological materials featuring exotic band structures, unconventional current flow patterns, and emergent organizing principles offer attractive platforms for the development of next-generation transformative quantum electronic technologies. The family of MnBi2Te4 (Bi2Te3)n materials is naturally relevant in this context due to their nontrivial band topology, tunable magnetism, and recently discovered extraordinary quantum transport behaviors. Despite numerous pioneering studies to date, the local magnetic properties of MnBi2Te4 (Bi2Te3)n remain an open question, hindering a comprehensive understanding of their fundamental material properties. Exploiting nitrogen-vacancy (NV) centers in diamond, we report nanoscale quantum imaging of the magnetic phase transitions and spin fluctuations in exfoliated MnBi4Te7 flakes, revealing the underlying spin transport physics and magnetic domains at the nanoscale. Our results highlight the unique advantage of NV centers in exploring the magnetic properties of emergent quantum materials, opening new opportunities for investigating the interplay between topology and magnetism.

11.
Plant J ; 110(4): 1111-1127, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35275421

RESUMEN

Leaf angle is an important trait in plants. Here, we demonstrate that the leucine-rich repeat receptor-like kinase OsSLA1 plays an important role in leaf angle regulation in rice (Oryza sativa). OsSLA1 mutant plants exhibited a small leaf angle phenotype due to changes of adaxial cells in the lamina joint. GUS staining revealed that OsSLA1 was highly expressed in adaxial cells of the lamina joint. The OsSLA1 mutant plants were insensitive to exogenous epibrassinolide (eBL) and showed upregulated expression of DWARF and CPD, but downregulated expression of BU1, BUL1, and ILI1, indicating that brassinosteroid (BR) signal transduction was blocked. Fluorescence microscopy showed that OsSLA1 was localized to the plasma membrane and nearby periplasmic vesicles. Further study showed that OsSLA1 interacts with OsBRI1 and OsBAK1 via its intracellular domain and promotes the interaction between OsBRI1 and OsBAK1. In addition, phosphorylation experiments revealed that OsSLA1 does not possess kinase activity, but that it can be phosphorylated by OsBRI1 in vitro. Knockout of OsSLA1 in the context of d61 caused exacerbation of the mutant phenotype. These results demonstrate that OsSLA1 regulates leaf angle formation via positive regulation of BR signaling by enhancing the interaction of OsBRI1 with OsBAK1.


Asunto(s)
Oryza , Brasinoesteroides/metabolismo , Regulación de la Expresión Génica de las Plantas , Oryza/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
12.
Adv Mater ; 34(23): e2200327, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35322479

RESUMEN

Novel non-collinear antiferromagnets with spontaneous time-reversal symmetry breaking, non-trivial band topology, and unconventional transport properties have received immense research interest over the past decade due to their rich physics and enormous promise in technological applications. One of the central focuses in this emerging field is exploring the relationship between the microscopic magnetic structure and exotic material properties. Here, nanoscale imaging of both spin-orbit-torque-induced deterministic magnetic switching and chiral spin rotation in non-collinear antiferromagnet Mn3 Sn films using nitrogen-vacancy (NV) centers are reported. Direct evidence of the off-resonance dipole-dipole coupling between the spin dynamics in Mn3 Sn and proximate NV centers is also demonstrated by NV relaxometry measurements. These results demonstrate the unique capabilities of NV centers in accessing the local information of the magnetic order and dynamics in these emergent quantum materials and suggest new opportunities for investigating the interplay between topology and magnetism in a broad range of topological magnets.

13.
Sci Adv ; 8(1): eabg8562, 2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-34995122

RESUMEN

Antiferromagnetic insulators (AFIs) are of substantial interest because of their potential in the development of next-generation spintronic devices. One major effort in this emerging field is to harness AFIs for long-range spin information communication and storage. Here, we report a noninvasive method to optically access the intrinsic spin transport properties of an archetypical AFI α-Fe2O3 via nitrogen-vacancy (NV) quantum spin sensors. By NV relaxometry measurements, we successfully detect the frequency-dependent dynamic fluctuations of the spin density of α-Fe2O3 along the Néel order parameter, from which an intrinsic spin diffusion constant of α-Fe2O3 is experimentally measured in the absence of external spin biases. Our results highlight the significant opportunity offered by NV centers in diagnosing the underlying spin transport properties in a broad range of high-frequency magnetic materials such as two-dimensional magnets, spin liquids, and magnetic Weyl semimetals, which are challenging to access by the conventional measurement techniques.

14.
Spectrochim Acta A Mol Biomol Spectrosc ; 267(Pt 2): 120575, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34772634

RESUMEN

Organic fluorescent molecules with π-conjugated system have shown great importance in numerous applications including bioimaging and optoelectronics. Planar aggregation-induced emissive (AIE) organic compounds with efficient solid-state luminescence are rarely developed and urgently needed in various applications. In this work, highly planar 4-styrylbenzonitrile derivatives have been synthesized. Most of these compounds show strong AIE properties with hundred-fold fluorescent enhancement. Moreover, these molecules are deep blue emissive in solid state, exhibiting good to excellent fluorescence quantum efficiency. The single crystal analysis shows that adjacent molecules could form special J-type aggregation. The intramolecular rotations are efficiently restricted by various noncovalent interactions. These molecular arrangements could be essential for the observed strong emission in aggregated and solid state. This work has paved a new path to efficient AIE-active organic emitters with highly planar conformations from 4-styrylbenzonitrile structure.


Asunto(s)
Luminiscencia , Compuestos Orgánicos , Fluorescencia , Conformación Molecular , Estructura Molecular
15.
Phys Rev Lett ; 127(11): 117202, 2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34558931

RESUMEN

Recently, antiferromagnets have received revived interest due to their significant potential for developing next-generation ultrafast magnetic storage. Here, we report dc spin pumping by the acoustic resonant mode in a canted easy-plane antiferromagnet α-Fe_{2}O_{3} enabled by the Dzyaloshinskii-Moriya interaction. Systematic angle and frequency-dependent measurements demonstrate that the observed spin-pumping signals arise from resonance-induced spin injection and inverse spin Hall effect in α-Fe_{2}O_{3}-metal heterostructures, mimicking the behavior of spin pumping in conventional ferromagnet-nonmagnet systems. The pure spin current nature is further corroborated by reversal of the polarity of spin-pumping signals when the spin detector is switched from platinum to tungsten which has an opposite sign of the spin Hall angle. Our results reveal the intriguing physics underlying the low-frequency spin dynamics and transport in canted easy-plane antiferromagnet-based heterostructures.

16.
Nano Lett ; 21(17): 7277-7283, 2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34415171

RESUMEN

The interplay among topology, superconductivity, and magnetism promises to bring a plethora of exotic and unintuitive behaviors in emergent quantum materials. The family of Fe-chalcogenide superconductors FeTexSe1-x are directly relevant in this context due to their intrinsic topological band structure, high-temperature superconductivity, and unconventional pairing symmetry. Despite enormous promise and expectation, the local magnetic properties of FeTexSe1-x remain largely unexplored, which prevents a comprehensive understanding of their underlying material properties. Exploiting nitrogen vacancy (NV) centers in diamond, here we report nanoscale quantum sensing and imaging of magnetic flux generated by exfoliated FeTexSe1-x flakes, demonstrating strong correlation between superconductivity and ferromagnetism in FeTexSe1-x. The coexistence of superconductivity and ferromagnetism in an established topological superconductor opens up new opportunities for exploring exotic spin and charge transport phenomena in quantum materials. The demonstrated coupling between NV centers and FeTexSe1-x may also find applications in developing hybrid architectures for next-generation, solid-state-based quantum information technologies.

17.
Spectrochim Acta A Mol Biomol Spectrosc ; 262: 120152, 2021 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-34256238

RESUMEN

Amines are widely used in many fields including agriculture, dyes, medicine and food processing. However, volatile amine vapors could initiate acute and serious damage to human bodies. Thus, highly efficient detection of volatile amine vapors has great importance for academic research as well as practical application. In this work, a turn-on type fluorescent sensor BZCO has been developed, which could be used to detect volatile amine vapors. The portable BZCO sensor can be easily prepared through immersing filter paper into its CH2Cl2 solution and then evaporating it to dryness. This paper-based amine vapor sensor exhibits high sensitivity with a relatively low detection limit at 3.82 ppm. It also has good selectivity for discriminating amine vapors from volatile organic solvents. The detection mechanism has been confirmed by UV-vis spectral analysis. The practical applications of this paper-based BZCO sensor, such as detection of food spoilage and fluorescent security ink, have been investigated. This work has developed a new fluorescent sensor BZCO, which has broad applications in various fields, including amine gas detection, security and anti-counterfeiting materials.


Asunto(s)
Aminas , Colorantes Fluorescentes , Cumarinas , Gases , Humanos , Solventes
18.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34131074

RESUMEN

Scattering experiments have revolutionized our understanding of nature. Examples include the discovery of the nucleus [R. G. Newton, Scattering Theory of Waves and Particles (1982)], crystallography [U. Pietsch, V. Holý, T. Baumback, High-Resolution X-Ray Scattering (2004)], and the discovery of the double-helix structure of DNA [J. D. Watson, F. H. C. Crick, Nature 171, 737-738]. Scattering techniques differ by the type of particles used, the interaction these particles have with target materials, and the range of wavelengths used. Here, we demonstrate a two-dimensional table-top scattering platform for exploring magnetic properties of materials on mesoscopic length scales. Long-lived, coherent magnonic excitations are generated in a thin film of yttrium iron garnet and scattered off a magnetic target deposited on its surface. The scattered waves are then recorded using a scanning nitrogen vacancy center magnetometer that allows subwavelength imaging and operation under conditions ranging from cryogenic to ambient environment. While most scattering platforms measure only the intensity of the scattered waves, our imaging method allows for spatial determination of both amplitude and phase of the scattered waves, thereby allowing for a systematic reconstruction of the target scattering potential. Our experimental results are consistent with theoretical predictions for such a geometry and reveal several unusual features of the magnetic response of the target, including suppression near the target edges and a gradient in the direction perpendicular to the direction of surface wave propagation. Our results establish magnon scattering experiments as a platform for studying correlated many-body systems.

19.
Nano Lett ; 20(5): 3284-3290, 2020 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-32297750

RESUMEN

We report the optical detection of magnons with a broad range of wavevectors in magnetic insulator Y3Fe5O12 thin films by proximate nitrogen-vacancy (NV) single-spin sensors. Through multimagnon scattering processes, the excited magnons generate fluctuating magnetic fields at the NV electron spin resonance frequencies, which accelerate the relaxation of NV spins. By measuring the variation of the emitted spin-dependent photoluminescence of the NV centers, magnons with variable wavevectors up to ∼5 × 107 m-1 can be optically accessed, providing an alternative perspective to reveal the underlying spin behaviors in magnetic systems. Our results highlight the significant opportunities offered by NV single-spin quantum sensors in exploring nanoscale spin dynamics of emergent spintronic materials.

20.
RSC Adv ; 10(14): 8080-8086, 2020 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35497813

RESUMEN

In recent years, stretchable electronics have attracted great attention because of their broad application prospects such as in the field of wearable electronics, skin-like electronics, medical transplantation and human-machine interaction. Intrinsically stretchable transistors have advantages in many aspects. However, integration of intrinsically stretchable layers to achieve stretchable transistors is still challenging. In this work, we combine the excellent electrical and mechanical properties of carbon nanotubes with excellent dielectric and mechanical properties of styrene-ethylene-butylene-styrene (SEBS) to realize intrinsically stretchable thin film transistors (TFTs). This is the first time that all the intrinsically stretchable components have been combined to realize multiple stretchable TFTs in a batch by photolithography-based process. In this process, a plasma resistant layer has been introduced to protect the SEBS dielectric from being damaged during the etching process so that the integration can be achieved. The highly stretchable transistors show a high carrier mobility of up to 10.45 cm2 V-1 s-1. The mobility maintains 2.01 cm2 V-1 s-1 even after the transistors are stretched by over 50% for more than 500 times. Moreover, the transistors have been scaled to channel length and width of 56 µm and 20 µm, respectively, which have a higher integration level. The stretchable transistors have light transmittance of up to 60% in the visible range. The proposed method provides an optional solution to large-scale integration for stretchable electronics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...