Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 1190, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331933

RESUMEN

The mechanisms underlying glucocorticoid (GC)-induced obesity are poorly understood. Macrophages are the primary targets by which GCs exert pharmacological effects and perform critical functions in adipose tissue homeostasis. Here, we show that macrophages are essential for GC-induced obesity. Dexamethasone (Dex) strongly induced Krüppel-like factor 9 (Klf9) expression in macrophages. Similar to Dex, lentivirus-mediated Klf9 overexpression inhibits M1 and M2a markers expression, causing macrophage deactivation. Furthermore, the myeloid-specific Klf9 transgene promotes obesity. Conversely, myeloid-specific Klf9-knockout (mKlf9KO) mice are lean. Moreover, myeloid Klf9 knockout largely blocks obesity induced by chronic GC treatment. Mechanistically, GC-inducible KLF9 recruits the SIN3A/HDAC complex to the promoter regions of Il6, Ptgs2, Il10, Arg1, and Chil3 to inhibit their expression, subsequently reducing thermogenesis and increasing lipid accumulation by inhibiting STAT3 signaling in adipocytes. Thus, KLF9 in macrophages integrates the beneficial anti-inflammatory and adverse metabolic effects of GCs and represents a potential target for therapeutic interventions.


Asunto(s)
Adiposidad , Glucocorticoides , Animales , Ratones , Glucocorticoides/farmacología , Glucocorticoides/metabolismo , Obesidad/genética , Obesidad/metabolismo , Macrófagos/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo
2.
Acta Pharmacol Sin ; 43(9): 2362-2372, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35105957

RESUMEN

Bile acid (BA) homeostasis is regulated by the extensive cross-talk between liver and intestine. Many bile-acid-activated signaling pathways have become attractive therapeutic targets for the treatment of metabolic disorders. In this study we investigated the regulatory mechanisms of BA in the intestine. We showed that the BA levels in the gallbladder and faeces were significantly increased, whereas serum BA levels decreased in systemic Krüppel-like factor 9 (Klf9) deficiency (Klf9-/-) mice. These phenotypes were also observed in the intestine-specific Klf9-deleted (Klf9vil-/-) mice. In contrast, BA levels in the gallbladder and faeces were reduced, whereas BA levels in the serum were increased in intestinal Klf9 transgenic (Klf9Rosa26+/+) mice. By using a combination of biochemical, molecular and functional assays, we revealed that Klf9 promoted the expression of apical sodium-dependent bile acid transporter (Asbt) in the terminal ileum to enhance BA absorption in the intestine. Reabsorbed BA affected liver BA synthetic enzymes by regulating Fgf15 expression. This study has identified a previously neglected transcriptional pathway that regulates BA homeostasis.


Asunto(s)
Ácidos y Sales Biliares , Factores de Transcripción de Tipo Kruppel/metabolismo , Simportadores , Animales , Ácidos y Sales Biliares/metabolismo , Circulación Enterohepática , Intestinos , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Transportadores de Anión Orgánico Sodio-Dependiente/genética , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Simportadores/metabolismo , Factores de Transcripción/metabolismo
3.
Int J Nanomedicine ; 12: 8599-8613, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29238194

RESUMEN

Efficient and safe nonviral gene delivery systems are a prerequisite for the clinical application of therapeutic genes. In this paper, polyethyleneimine-capped silver nanoclusters (PEI-AgNCs) were prepared for the purpose of microRNA (miRNA) delivery. The resultant PEI-AgNCs were characterized by a photoluminescence assay and transmission electron microscopy. A cytotoxicity assay showed that PEI-AgNCs exhibit relatively low cytotoxicity. Interestingly, PEI-AgNCs were confirmed to transfect miRNA mimics more effectively than PEI in HepG2 and 293A cells. In this regard, hsa-miR-21 or hsa-miR-221 mimics (miR-21/221m) were transported into HepG2 cells by using PEI-AgNCs. The miR-21/221 expression was determined post-transfection by quantitative real-time polymerase chain reaction. Compared with the negative control, PEI-AgNCs/miR-21/221m groups exhibited higher miR-21/221 levels. In addition, AgNCs endow PEI with stronger antibacterial activity, and this advantage provided PEI-AgNCs the potential to prevent bacterial contamination during the transfection process. Furthermore, we showed that PEI-AgNCs are viable nanomaterials for plain imaging of the cells by laser scanning confocal microscopy, indicating great potential as an ideal fluorescent probe to track the transfection behavior. These results demonstrated that PEI-AgNCs are promising and novel nonviral vectors for gene delivery.


Asunto(s)
MicroARNs/administración & dosificación , Nanoestructuras/química , Polietileneimina/química , Plata/administración & dosificación , Transfección/métodos , Antibacterianos/administración & dosificación , Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Células HEK293 , Células Hep G2 , Humanos , MicroARNs/genética , Microscopía Confocal , Nanoestructuras/administración & dosificación , Oligonucleótidos/administración & dosificación , Polietileneimina/farmacología , Reacción en Cadena en Tiempo Real de la Polimerasa , Plata/química
4.
Sheng Wu Gong Cheng Xue Bao ; 33(7): 1136-1144, 2017 Jul 25.
Artículo en Chino | MEDLINE | ID: mdl-28869733

RESUMEN

We constructed recombinant adenoviruses expressing miR-29b2c (Ad-miR29b2c), and analyzed their effects on the proliferation and migration of HGC-27 and MGC-803 cells. miR-29b2c gene was amplified by PCR from genomic DNA and cloned into the pAdTrack-CMV vector to create the shuttle plasmid pAdT-29b2c. The recombinant plasmid was verified by restriction enzyme digestion and sequencing. The linearized shuttle vector was mixed with an adenoviral backbone plasmid (pAdEasy-1), followed by cotransformation into competent BJ5183 cells to generate the recombinant plasmid pAd-miR-29b2c. Finally, recombinant adenoviral vectors were generated by transfecting the recombinant plasmid into 293A packaging cell line. HGC-27 and MGC-803 cells were infected with the recombinant adenoviruses expressing pAd-miR-29b2c, then MTT and wound-healing assay were used to analyze the effects of pAd-miR-29b2c on the proliferation and migration of HGC-27 and MGC-803 cells. The miR-29b and miR-29c levels were significantly increased in HGC-27 cells after infected with pAd-miR-29b2c. MTT and wound-healing analysis also revealed a significant decrease in proliferation and migration of HGC-27 and MGC-803 cells compared to the control Ad-GFP-infected cells. Furthermore, western blotting results demonstrated that the protein expression level of δ-catenin was reduced in pAd-miR-29b2c transfected HGC-27 and MGC-803 cells. Taken together, the recombinant adenoviral vector was generated, and it can significantly inhibit the proliferation and migration of HGC-27 and MGC-803 cells.


Asunto(s)
Movimiento Celular , Proliferación Celular , Vectores Genéticos , MicroARNs/genética , Adenoviridae , Línea Celular Tumoral , Humanos , Plásmidos
5.
Gene ; 627: 194-201, 2017 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-28627440

RESUMEN

Abnormal activation of hepatic gluconeogenesis is a major contributor to fasting hyperglycemia in type 2 diabetes; however, the potential role of microRNAs in gluconeogenesis remains unclear. Here, we showed that hepatic expression levels of microRNA-21 (miR-21) were decreased in db/db and high-fat diet (HFD)-induced diabetic mice. Adenovirus-mediated overexpression of miR-21 decreased the expression of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) and inhibited glucose production in primary mouse hepatocytes. Silencing of miR-21 reversed this effect. Overexpression of miR-21 in the livers of db/db and HFD-induced mice was able to suppress hepatic gluconeogenesis, subsequently decreasing blood glucose levels and improving glucose and insulin intolerance. Furthermore, overexpression of miR-21 in primary mouse hepatocytes and mouse livers decreased the protein levels of FOXO1 and increased hepatic insulin sensitivity. By contrast, silencing of miR-21 increased the protein levels of FOXO1, subsequently leading to a decrease in insulin sensitivity and impaired glucose intolerance in C57BL/6 mice fed with high-fat diet for 4weeks. Finally, we confirmed that FOXO1 was a potential target of miR-21. These results suggest that miR-21 is a critical regulator in hepatic gluconeogenesis and may provide a novel therapeutic target for treating insulin resistance and type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Proteína Forkhead Box O1/metabolismo , Gluconeogénesis , Glucosa/metabolismo , Hígado/metabolismo , MicroARNs/genética , Animales , Células Cultivadas , Diabetes Mellitus Tipo 2/metabolismo , Proteína Forkhead Box O1/genética , Hepatocitos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA