Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 14(49): 54969-54980, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36469489

RESUMEN

Obtaining air-stable and high-performance flexible n-type single-walled carbon nanotube (SWCNT)-based thermoelectric films used in wearable electronic devices is a challenge. In this work, the microstructure and thermoelectric properties of n-type SWCNT-based films have been optimized via doping C60 and its derivative into polyethylenimine/single-walled carbon nanotube (PEI/SWCNT) films. The result demonstrated that the dispersity of triethylene glycol-modified C60 (TEG-C60) was better in PEI/SWCNT films than that of pure C60. Among the prepared composite films, TEG-C60-doped PEI/SWCNT (TEG-C60/PEI/SWCNT) films exhibited the highest TE performance, achieving a peak electrical conductivity of 923 S cm-1 with a Seebeck coefficient of -42 µV K-1 at a TEG-C60/SWCNT mass ratio of 1:100. Compared to that of PEI/SWCNT, the power factor was increased significantly from 40 to 162 µW m-1 K-2 after the addition of TEG-C60, which was higher than that of films after the addition of C60. In addition, the n-type doped SWCNT films had good air stability at high temperatures, and the Seebeck coefficients of C60/PEI/SWCNT and TEG-C60/PEI/SWCNT at 120 °C were still negative and remained at 92% and 85%, respectively, after 20 days. Furthermore, a flexible TE device consisting of five pairs of p-n junctions was assembled using the optimum hybrid film, which generated a maximum output power of 3.6 µW at a temperature gradient of 50.2 K. Therefore, this study provides a facile way to enhance the thermoelectric properties of n-type carbon nanotube-based materials, which have potential application in flexible power generators.

2.
ACS Appl Mater Interfaces ; 12(35): 39145-39153, 2020 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-32805894

RESUMEN

In order to improve the thermoelectric properties of single-walled carbon nanotubes (SWCNTs), bilayer-like structures of graphene quantum dots (GQDs) and SWCNTs films (b-GQDs/SWCNTs) were prepared by directly coating GQDs on the surface of SWCNTs films. Compared to pristine SWCNT films (p-SWCNTs), the electrical conductivity of b-GQDs/SWCNTs increased while their Seebeck coefficient decreased. The special interface structure of GQDs and SWCNTs can not only improve carrier transport to increase electrical conductivity but also scatter phonons to reduce thermal conductivity. A maximum power factor (PF) of 51.2 µW·m-1·K-2 is obtained at 298 K for the b-GQDs/SWCNTs (2:100), which is higher than the PF of 40.9 µW·m-1·K-2 by p-SWCNTs. Incorporation of GQDs shows an obvious improvement in power factor and a significant reduction in the thermal conductivity for SWCNTs, and thus, preparation of b-GQDs/SWCNTs provides a new strategy to enhance the thermoelectric properties of SWCNTs-based materials.

3.
Polymers (Basel) ; 11(8)2019 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-31382416

RESUMEN

Thermoelectric (TE) generators consisting of flexible and lightweight p- and n-type single-walled carbon nanotube (SWCNT)-based composites have potential applications in powering wearable electronics using the temperature difference between the human body and the environment. Tuning the TE properties of SWCNTs, particularly p- versus n-type control, is currently of significant interest. Herein, the TE properties of SWCNT-based flexible films consisting of SWCNTs doped with polyethyleneimine (PEI) were evaluated. The carrier type of the SWCNT/PEI composites was modulated by regulating the proportion of SWCNTs and PEI using simple mixing techniques. The as-prepared SWCNT/PEI composite films were switched from p- to n-type by the addition of a high amount of PEI (>13.0 wt.%). Moreover, interconnected SWCNTs networks were formed due to the excellent SWNT dispersion and film formation. These parameters were improved by the addition of PEI and Nafion, which facilitated effective carrier transport. A TE generator with three thermocouples of p- and n-type SWCNT/PEI flexible composite films delivered an open circuit voltage of 17 mV and a maximum output power of 224 nW at the temperature gradient of 50 K. These promising results showed that the flexible SWCNT/PEI composites have potential applications in wearable and autonomous devices.

4.
Sci Rep ; 8(1): 6441, 2018 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-29691433

RESUMEN

The typical conductive polymer of PEDOT:PSS has recently attracted intensive attention in thermoelectric conversion because of its low cost and low thermal conductivity as well as high electrical conductivity. However, compared to inorganic counterparts, the relatively poor thermoelectric performance of PEDOT:PSS has greatly limited its development and high-tech applications. Here, we report a dramatic enhancement in the thermoelectric performance of PEDOT:PSS by constructing unique composite films with graphene quantum dots (GQDs). At room temperature, the electrical conductivity and Seebeck coefficient of PEDOT:PSS/GQDs reached to 7172 S/m and 14.6 µV/K, respectively, which are 30.99% and 113.2% higher than those of pristine PEDOT:PSS. As a result, the power factor of the optimized PEDOT:PSS/GQDs composite is 550% higher than that of pristine PEDOT:PSS. These significant improvements are attributed to the ordered alignment of PEDOT chains on the surface of GQDs, originated from the strong interfacial interaction between PEDOT:PSS and GQDs and the separation of PEDOT and PSS phases. This study evidently provides a promising route for PEDOT:PSS applied in high-efficiency thermoelectric conversion.

5.
Polymers (Basel) ; 10(7)2018 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-30960722

RESUMEN

In this paper, a solvent vapor-induced phase separation (SVIPS) technique was used to create a porous structure in polyvinylidene fluoride/Multi-walled carbon nanotube (PVDF/MWNTs) composites with the aim of increasing the electrical conductivity through the incorporation of MWNTs while retaining a low thermal conductivity. By using the dimethylformamide/acetone mixture, porous networks could be generated in the PVDF/MWNTs composites upon the rapid volatilization of acetone. The electrical conductivity was gradually enhanced by the addition of MWNTs. At the same time, the thermal conductivity of the PVDF film could be retained at 0.1546 W·m-1·K-1 due to the porous structure being even by loaded with a high content of MWNTs (i.e., 15 wt.%). Thus, the Seebeck coefficient, power factor and figure of merit (ZT) were subsequently improved with maximum values of 324.45 µV/K, 1.679 µW·m-1·K-2, and 3.3 × 10-3, respectively. The microstructures, thermal properties, and thermoelectric properties of the porous PVDF/MWNTs composites were studied. It was found that the enhancement of thermoelectric properties would be attributed to the oxidation of MWNTs and the porous structure of the composites. The decrease of thermal conductivity and the increase of Seebeck coefficient were induced by the phonon scattering and energy-filtering effect. The proposed method was found to be facile and effective in creating a positive effect on the thermoelectric properties of composites.

6.
ACS Appl Mater Interfaces ; 7(26): 14397-403, 2015 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-26075677

RESUMEN

Composite materials, such as organic matrices doped with inorganic fillers, can generate new properties that exhibit multiple functionalities. In this paper, an epoxy-based nanocomposite that has a high thermal conductivity and a low electrical conductivity, which are required for the use of a material as electronic packaging and insulation, was prepared. The performance of the epoxy was improved by incorporating a magnesium oxide-coated graphene (MgO@GR) nanomaterial into the epoxy matrix. We found that the addition of a MgO coating not only improved the dispersion of the graphene in the matrix and the interfacial bonding between the graphene and epoxy but also enhanced the thermal conductivity of the epoxy while preserving the electrical insulation. By adding 7 wt % MgO@GR, the thermal conductivity of the epoxy nanocomposites was enhanced by 76% compared with that of the neat epoxy, and the electrical resistivity was maintained at 8.66 × 10(14) Ω m.

7.
Nanotechnology ; 23(47): 475704, 2012 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-23103878

RESUMEN

Water-soluble poly(sodium 4-styrenesulfonate) modified graphene (PSSS-GR) was successfully synthesized via covalently grafting poly(sodium 4-styrenesulfonate) (PSSS) on the surfaces of graphene (GR) nanosheets. The structure of PSSS-GR was investigated with Fourier transform infrared, x-ray photoelectron and Raman spectroscopy, thermogravimetric analysis, transmission and scanning electron microscopy and atomic force microscopy. The PSSS chains made the GR nanosheets fully exfoliate into a single-layer structure, and the PSSS layer on GR reached 90 wt%. PSSS chains displayed mutually repulsive effects on promoting GR sheets that were more stable in water. The performances of supercapacitors made of PSSS-GR and unmodified GR electrodes were compared using cyclic voltammetry and galvanostatic charge/discharge techniques. The results showed that PSSS is an effective binder for graphene sheets and can increase the specific capacitance of PSSS-GR based supercapacitors and improve their rate capability. The maximum specific capacitance of the PSSS-GR based supercapacitor was 210 F g(-1) at 5 A g(-1), which was 166% higher than for one made of unmodified graphene electrodes. Electrochemical impedance spectroscopy demonstrated fast ion diffusion in the PSSS-GR electrode structure. PSSS-GR based supercapacitors can fulfil one of the essential requirements for potential electric energy storage applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA