Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Mater ; : e2404660, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890789

RESUMEN

In the recent advances of organic solar cells (OSCs), quinoxaline (Qx)-based nonfullerene acceptors (QxNFAs) have attracted lots of attention and enabled the recorded power conversion efficiency approaching 20%. As an excellent electron-withdrawing unit, Qx possesses advantages of many modifiable sites, wide absorption range, low reorganization energy, and so on. To develop promising QxNFAs to further enhance the photovoltaic performance of OSCs, it is necessary to systematically summarize the QxNFAs reported so far. In this review, all the focused QxNFAs are classified into five categories as following: SM-Qx, YQx, fused-YQx, giant-YQx, and polymer-Qx according to the molecular skeletons. The molecular design concepts, relationships between the molecular structure and optoelectronic properties, intrinsic mechanisms of device performance are discussed in detail. At the end, the advantages of this kind of materials are summed up, the molecular develop direction is prospected, the challenges faced by QxNFAs are given, and constructive solutions to the existing problems are advised. Overall, this review presents unique viewpoints to conquer the challenge of QxNFAs and thus boost OSCs development further toward commercial applications.

2.
Angew Chem Int Ed Engl ; 63(22): e202403051, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38499468

RESUMEN

High open-circuit voltage (Voc) organic solar cells (OSCs) have received increasing attention because of their promising application in tandem devices and indoor photovoltaics. However, the lack of a precise correlation between molecular structure and stacking behaviors of wide band gap electron acceptors has greatly limited its development. Here, we adopted an asymmetric halogenation strategy (AHS) and synthesized two completely non-fused ring electron acceptors (NFREAs), HF-BTA33 and HCl-BTA33. The results show that AHS significantly enhances the molecular dipoles and suppresses electron-phonon coupling, resulting in enhanced intramolecular/intermolecular interactions and decreased nonradiative decay. As a result, PTQ10 : HF-BTA33 realizes a power conversion efficiency (PCE) of 11.42 % with a Voc of 1.232 V, higher than that of symmetric analogue F-BTA33 (PCE=10.02 %, Voc=1.197 V). Notably, PTQ10 : HCl-BTA33 achieves the highest PCE of 12.54 % with a Voc of 1.201 V due to the long-range ordered π-π packing and enhanced surface electrostatic interactions thereby facilitating exciton dissociation and charge transport. This work not only proves that asymmetric halogenation of completely NFREAs is a simple and effective strategy for achieving both high PCE and Voc, but also provides deeper insights for the precise molecular design of low cost completely NFREAs.

3.
RSC Adv ; 14(7): 4568-4574, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38312728

RESUMEN

Photoelectrochemical water splitting (PEC-WS) has attracted considerable attention owing to its low energy consumption and sustainable nature. Constructing semiconductor heterojunctions with controllable band structure can effectively facilitate photogenerated carrier separation. In this study, a FTO/ZnO/Cu2O/Ag@SiO2 photoanode with a Cu2O/ZnO p-n heterojunction and Ag@SiO2 nanoparticles is constructed to investigate its PEC-WS performance. Compared with a bare ZnO photoanode, the photocurrent density of the FTO/ZnO/Cu2O/Ag@SiO2 photoanode (0.77 mA cm-2) at 1.23 VRHE exhibits an increment of 88%, and a cathodic shift of 0.1 V for the on-set potential (0.4 VRHE). Detailed photoelectrochemical analyses reveal that the Cu2O/ZnO p-n heterojunction formed between Cu2O and ZnO can effectively promote photogenerated carrier separation. The surface plasmonic effect of the Ag@SiO2 nanoparticles can further promote the photogenerated carrier transfer efficiency, which synergistically improves the PEC-WS performance.

4.
Adv Mater ; 36(21): e2313772, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38402409

RESUMEN

Fiber-shaped aqueous zinc-ion batteries (FAZIBs) with intrinsic safety, highcapacity, and superb omnidirectional flexibility hold promise for wearable energy-supply devices. However, the interfacial separation of fiber-shaped electrodes and electrolytes caused by Zinc (Zn) stripping process and severe Zn dendrites occurring at the folded area under bending condition seriously restricts FAZIBs' practical application. Here, an advanced confinement encapsulation strategy is originally reported to construct dual-layer gel electrolyte consisting of high-fluidity polyvinyl alcohol-Zn acetate inner layer and high-strength Zn alginate outer layer for fiber-shaped Zn anode. Benefiting from the synergistic effect of inner-outer gel electrolyte and the formation of solid electrolyte interphase on Zn anode surface by lysine additive, the resulting fiber-shaped Zn-Zn symmetric cell delivers long cycling life over 800 h at 1 mA cm-2 with dynamic bending frequency of 0.1 Hz. The finite element simulation further confirms that dual-layer gel electrolyte can effectively suppress the interfacial separation arising from the Zn stripping and bending process. More importantly, a robust twisted fiber-shaped Zn/zinc hexacyanoferrate battery based on dual-layer gel electrolyte is successfully assembled, achieving a remarkable capacity retention of 97.7% after bending 500 cycles. Therefore, such novel dual-layer gel electrolyte design paves the way for the development of long-life fiber-shaped aqueous metal batteries.

5.
Cardiovasc Res ; 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38252884

RESUMEN

AIMS: Adiponectin is an adipocyte-derived circulating protein that exerts cardiovascular and metabolic protection. Due to the futile degradation of endogenous adiponectin and the challenges of exogenous administration, regulatory mechanisms of adiponectin biosynthesis are of significant pharmacological interest. METHODS AND RESULTS: Here, we report that 5-diphosphoinositol 1,2,3,4,6-pentakisphosphate (5-InsP7) generated by inositol hexakisphosphate kinase 1 (IP6K1) governed circulating adiponectin levels via thiol-mediated protein quality control in the secretory pathway. IP6K1 bound to adiponectin and DsbA-L and generated 5-InsP7 to stabilize adiponectin/ERp44 and DsbA-L/Ero1-Lα interactions, driving adiponectin intracellular degradation. Depleting 5-InsP7 by either IP6K1 deletion or pharmacological inhibition blocked intracellular adiponectin degradation. Whole-body and adipocyte-specific deletion of IP6K1 boosted plasma adiponectin levels, especially its high molecular weight forms, and activated AMPK-mediated protection against myocardial ischemia-reperfusion injury. Pharmacological inhibition of 5-InsP7 biosynthesis in WT but not adiponectin knockout mice attenuated myocardial ischemia-reperfusion injury. CONCLUSIONS: Our findings revealed that 5-InsP7 is a physiological regulator of adiponectin biosynthesis that is amenable to pharmacological intervention for cardioprotection.

6.
Inorg Chem ; 62(46): 18809-18813, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37943673

RESUMEN

The design of a highly and photomodulated proton conductor is important for advanced potential applications in chemical sensors and bioionic functions. In this work, a metal-organic framework (MOF; Gd-NO2) with high proton conductivity is synthesized with a photosensitive ligand of 5-nitroisophthalic acid (BDC-NO2), and it provides remote-control photomodulated proton-conducting behavior. The proton conduction of Gd-NO2 reaches 3.66 × 10-2 S cm-1 at 98% relative humidity (RH) and 25 °C, while it decreases by ∼400 times after irradiation with a 355 nm laser. The newly generated and disappearing FT-IR characteristic peaks reveal that this photomodulated process is realized by the photoinduced transformation from BDC-NO2 to 5-nitroso-isophthalic acid (BDC-NO). According to density functional theory, the smaller electronegativity of the -NO group, the longer distance of the hydrogen bond between BDC-NO and H2O molecules, and the lower water adsorption energy of BDC-NO indicate that the irradiated sample possesses a poorer hydrophilicity and has difficulty forming rich hydrogen-bonded networks, which results in the remarkable decrease of proton conductivity.

7.
Dalton Trans ; 52(36): 12869-12877, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37622489

RESUMEN

Aqueous rechargeable zinc ion batteries (ARZIBs) are ideal for massive and longstanding energy storage applications because of their excellent security and low operation cost. Nevertheless, ARZIBs are subject to the severe corrosion reaction of zinc metal anodes that is derived from the thermodynamic unsteadiness of the zinc anodes in aqueous solution, as well as zinc dendrite growth originating from uncontrolled zinc deposition. Herein, we created a separator by coating a thin piece of polypropylene (PP) with a compound consisting of zinc trifluoromethanesulfonate [Zn(OTf)2] and poly(vinylidene fluoride-hexafluoropropylene (PVDF-HFP). Consequently, the severe corrosion reaction of the zinc metal anodes and the profuse formation of zinc dendrites were effectively mitigated by the novel PP separator, which prolonged the lifetime of the zinc metal anodes. When a zinc metal plating layer was used with preferential (002) crystallographic orientation, the cyclic performance over 1100 h of the symmetrical Zn∥Zn battery based on the novel separator was steady. Additionally, the Zn∥MnO2 batteries exhibited an impressive specific capacity and competitive long durability of 75.5% over 500 cycles at a current density of 0.1 A g-1. With this work, we intend to set the standard for designing novel separators in the construction of advanced zinc anodes for high-performance ARZIBs.

8.
Dalton Trans ; 52(35): 12308-12317, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37591825

RESUMEN

Surface catalyst engineering can effectively improve the photoelectrochemical water splitting (PEC-WS) performance of semiconductor photoelectrodes. In situ surface functional treatments can effectively reduce interface defects and improve photogenerated carrier transport. In this study, FTO/Sn@α-Fe2O3/FeOOH photoanodes were modified with in situ sulfide/nitride/phosphide treatments to improve their PEC-WS performance. Compared with the pure α-Fe2O3 photoanode, the photocurrent densities of FTO/Sn@α-Fe2O3/FeOOH photoanodes after sulfide/nitride/phosphide treatments increased from 0.88 to 3.38 mA cm-2 at 1.23 VRHE. The onset potential showed a cathode shift of 0.1 V. Photoelectrochemical analyses and theoretical calculation demonstrated that the surface engineering by sulfide/nitride/phosphide treatments can significantly reduce surface defects, enhance electrical conductivity and promote photogenerated carrier separation and transfer efficiency by regulating interface charge transfer, binding energy and internal electric field. The formation of an FeSx catalyst and N/P coordination complexes in the sulfide/nitride/phosphide processes on the surface of α-Fe2O3 photoanodes can effectively reduce photogenerated carrier recombination. This work provides experimental and theoretical support for surface structure design and improved photoelectric conversion performance of semiconductor photoelectrode materials.

9.
Dalton Trans ; 52(32): 11203-11212, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37522640

RESUMEN

As one of the most popular photoanode materials, hematite (α-Fe2O3) has obvious advantages in the field of photoelectrochemical water splitting (PEC-WS). However, it is difficult to achieve excellent PEC-WS performance without loading a cocatalyst serving as an electron/hole collector to promote photogenerated carrier separation. In this work, FTO/Sn@α-Fe2O3 photoanodes are modified with ZnCo-ZIF and ZnCoOOH bimetallic catalysts to obtain FTO/Sn@α-Fe2O3/Zn0.5Co0.5-ZIF and FTO/Sn@α-Fe2O3/Zn0.46Co0.54OOH photoanodes. Their photocurrent densities reach 2.6 mA cm-2 and 2.3 mA cm-2 at 1.23 VRHE, respectively. The detailed mechanism studies demonstrate that both ZnCoOOH and ZnCo-ZIF can effectively decrease the transfer resistance, increase the Fe2+/Fe3+ ratio and reduce the charge recombination of the α-Fe2O3 film, which synergistically improves the PEC-WS performance. Compared with ZnCoOOH, the ZnCo-ZIF exhibits better photogenerated carrier transfer efficiency and catalytic performance, which mainly can be attributed to the improved binding energy between the ZnCo-ZIF catalyst and the α-Fe2O3 film. This work provides a simple and feasible strategy for constructing bimetallic catalysts and deepens the understanding of different types of bimetallic catalysts for high-performance PEC-WS systems.

10.
Nat Commun ; 13(1): 4433, 2022 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-35907876

RESUMEN

Kinase-catalyzed phosphorylation plays a crucial role in pathological cardiac hypertrophy. Here, we show that CDC-like kinase 4 (CLK4) is a critical regulator of cardiomyocyte hypertrophy and heart failure. Knockdown of Clk4 leads to pathological cardiomyocyte hypertrophy, while overexpression of Clk4 confers resistance to phenylephrine-induced cardiomyocyte hypertrophy. Cardiac-specific Clk4-knockout mice manifest pathological myocardial hypertrophy with progressive left ventricular systolic dysfunction and heart dilation. Further investigation identifies nexilin (NEXN) as the direct substrate of CLK4, and overexpression of a phosphorylation-mimic mutant of NEXN is sufficient to reverse the hypertrophic growth of cardiomyocytes induced by Clk4 knockdown. Importantly, restoring phosphorylation of NEXN ameliorates myocardial hypertrophy in mice with cardiac-specific Clk4 deletion. We conclude that CLK4 regulates cardiac function through phosphorylation of NEXN, and its deficiency may lead to pathological cardiac hypertrophy. CLK4 is a potential intervention target for the prevention and treatment of heart failure.


Asunto(s)
Cardiomegalia , Insuficiencia Cardíaca , Animales , Cardiomegalia/patología , Modelos Animales de Enfermedad , Insuficiencia Cardíaca/metabolismo , Ratones , Ratones Noqueados , Proteínas de Microfilamentos/metabolismo , Miocitos Cardíacos/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas , Proteínas Tirosina Quinasas
11.
Inorg Chem ; 61(23): 8662-8669, 2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35617168

RESUMEN

Cluster-based framework metal iodides have diverse structures and excellent luminescence properties, and show promising applications in sensing and solid-state lighting. However, the design and synthesis of these materials remain great challenges because excess I- ions introduced into the synthesis systems decrease the condensation degree of M-I units. In this work, a new strategy is developed to control the condensation behavior of Ag-I units, and a new silver-rich cluster-based framework iodide [DabcoAg8I6(SPh)2]n (1) (Dabco = 1,4-diazabicyclo [2.2.2] octane) has been synthesized under solvothermal conditions in the presence of silver thiophenolate (AgSPh)n. Compound 1 features a three-dimensional (3-D) cluster-based framework with a pillared layer structure composed of cationic [Ag8I6]2+ clusters bridged by SPh- and Dabco, and displays low-temperature dual emission and luminescence thermochromism.

12.
Micromachines (Basel) ; 13(2)2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35208402

RESUMEN

Metal sulfides are considered excellent materials for oxygen evolution reaction because of their excellent conductivity and high electrocatalytic activity. In this report, the NiS-Cu2S composites were prepared on copper foam (NiS-Cu2S-CF) using a facile synthetic strategy. The scanning electron microscopy results confirmed that the NiS nanoneedles were successfully grown on Cu2S nanoflakes, greatly increasing the active sites. Particularly, the optimized 15% NiS-Cu2S-CF composite demonstrated excellent oxygen evolution activity with a small overpotential of 308 mV@20 mA cm-2, which is significantly smaller than that of noble metal-based electrocatalysts and other NiS-Cu2S-CF composites. The enhanced oxygen evolution activity is attributed to the unique morphology that can provide ample active sites, rich ion-transfer pathways, and the synergistic effect between NiS and Cu2S, which can boost the electron transfer rate.

13.
Chem Commun (Camb) ; 56(25): 3637-3640, 2020 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-32105284

RESUMEN

A cross-linked π-conjugated polymeric cobalt phthalocyanine material was developed by a facile, economical, scalable, and solid-phase synthesis method. In addition to being highly recyclable, this material showed greatly enhanced activity for the aerobic oxidative coupling of amines compared with a molecular catalyst before heterogenization, indicating good prospects for the material with a π-conjugated electronic character.

14.
Polymers (Basel) ; 12(1)2020 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-31935952

RESUMEN

A new strategy for preparing amphibious ZnO quantum dots (QDs) with blue fluorescence within hyper-branched poly(ethylenimine)s (HPEI) was proposed in this paper. By changing [Zn2+]/[OH-] molar ratio and heating time, ZnO QDs with a quantum yields (QY) of 30% in ethanol were obtained. Benefiting from the amphibious property of HPEI, the ZnO/HPEI nanocomposites in ethanol could be dissolved in chloroform and water, acquiring a QY of 53%, chloroform and 11% in water. By this strategy, the ZnO/HPEI nano-composites could be applied in not only in optoelectronics, but also biomedical fields (such as bio-imaging and gene transfection). The bio-imaging application of water-soluble ZnO/HPEI nanocomposites was investigated and it was found that they could easily be endocytosed by the COS-7 cells, without transfection reagent, and they exhibited excellent biological imaging behavior.

15.
J Nanosci Nanotechnol ; 19(9): 5707-5712, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30961728

RESUMEN

Porous photocatalysts have attracted significant attention for their large specific surface area, numerous surface catalytic active sites, and high photocatalytic activity. In this study, porous SrTiO3/TiO2 composites were successfully fabricated through a hydrothermal approach utilizing porous TiO2 as a substrate. The as-synthesized SrTiO3/TiO2 composites were then characterized by X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy, Brunauer-Emmett-Teller (BET), and ultraviolet-visible spectroscopy (UV-Vis) analysis. The results of SEM and BET indicate that such composites have a porous structure and large surface area. Compared to unadulterated TiO2, SrTiO3 /TiO2 composites exhibit higher photocatalytic performance for the photodegradation of rhodamine B under UV-Vis irradiation. Additionally, it was found that when the content of SrTiO3 reaches 20%, it achieves the maximum photodegradation efficiency of 98.6% under UV-Vis irradiation over 60 min. These results demonstrate that SrTiO3/TiO2 composites are a promising material in terms of environmental cleanliness.

16.
Biochem Biophys Res Commun ; 510(1): 97-103, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30661787

RESUMEN

SRPIN340, a selective serine-arginine protein kinase 1/2 (SRPK1/2) inhibitor, has been shown to have antiviral and anti-angiogenesis effects. However, its role in the heart is unknown. The present study explored the role of SRPIN340 in myocardial protection and the related mechanisms. During challenge with H2O2, cardiomyocytes (CMs) pretreated with SRPIN340 showed strikingly more injury tolerance, which was manifested as reduced lactate dehydrogenase (LDH) release and lower apoptotic index. Further research showed that SRPIN340 activated AKT under basal conditions, and AKT inhibition abolished the protective effects of SRPIN340 treatment during H2O2 stress. The protective effect of SRPIN340 was also demonstrated in perfused rat hearts subjected to ischemia/reperfusion (I/R). Collectively, our results reveal the beneficial effects of SRPIN340 against H2O2-induced oxidative damage in CMs and I/R-induced injury in a Langendorff heart model, supporting a potential application of SRPIN340 in the clinically relevant context of reperfusion. The effectiveness of SRPIN340 may be attributed to AKT signal activation.


Asunto(s)
Miocardio , Niacinamida/análogos & derivados , Estrés Oxidativo/efectos de los fármacos , Piperidinas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Animales , Corazón/efectos de los fármacos , Peróxido de Hidrógeno/farmacología , Daño por Reperfusión Miocárdica/prevención & control , Niacinamida/farmacología , Niacinamida/uso terapéutico , Piperidinas/uso terapéutico , Sustancias Protectoras/farmacología , Sustancias Protectoras/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Transducción de Señal
17.
Dalton Trans ; 45(31): 12352-61, 2016 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-27418243

RESUMEN

Solvothermal reactions of Cd(OAc)2/Zn(OAc)2 with a new ligand, (pyridin-3-yl)methyl 4-(2-(4-((pyridin-3-yl)methoxy)phenyl)diazenyl)benzoate (L1), under different templates via an in situ ligand transformation reaction produced five coordination polymers, [CdL2(H2O)]n (1), [Cd1.5L3]n (2), [Cd2L4]n (3), [(ZnL2)·H2O]n (4) and {[Zn(1,3-BDC)(L1)]·MeCN·0.5H2O}n (5), where HL = 4-(2-(4-((pyridin-3-yl)methoxy)phenyl)diazenyl)benzoic acid, 1,3-H2BDC = 1,3-benzenedicarboxylic acid. Compound 1 is a three-dimensional (3D) wave-like structure constructed from 4-connected Cd(ii) nodes and L(-) linkers. Compounds 2 and 3 bear similar 2D networks built from metallocyclic [Cd4L4] units. Compound 4 features a wrinkled 2D layer based on metallocyclic [Zn4L4] units. Compound 5 has a novel 1D single-wall metal-organic nanotube (SWMONT) in which the 1,3-BDC ligands act as linkers to connect the [Zn2(L1)2] rings. The results reveal that the different templates have a significant effect on the final structures. Compounds 1-5 exhibited relatively high photocatalytic activity towards the degradation of methylene blue (MB) in aqueous solution under UV-Vis irradiation. The kinetics of the catalytic photodegradation reactions and the stabilities of photocatalysts were also investigated.

18.
Nanoscale Res Lett ; 9(1): 115, 2014 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-24624925

RESUMEN

A new strategy for facile preparation of highly luminescent CdTe quantum dots (QDs) within amine-terminated hyperbranched poly(amidoamine)s (HPAMAM) was proposed in this paper. CdTe precursors were first prepared by adding NaHTe to aqueous Cd2+ chelated by 3-mercaptopropionic sodium (MPA-Na), and then HPAMAM was introduced to stabilize the CdTe precursors. After microwave irradiation, highly fluorescent and stable CdTe QDs stabilized by MPA-Na and HPAMAM were obtained. The CdTe QDs showed a high quantum yield (QY) up to 58%. By preparing CdTe QDs within HPAMAM, the biocompatibility properties of HPAMAM and the optical, electrical properties of CdTe QDs can be combined, endowing the CdTe QDs with biocompatibility. The resulting CdTe QDs can be directly used in biomedical fields, and their potential application in bio-imaging was investigated.

19.
Dalton Trans ; 43(7): 2915-24, 2014 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-24343562

RESUMEN

Solvothermal reactions of M(OAc)2·2H2O (M = Zn, Cd, Pb) with 2,2'-azodibenzoic acid (H2L) in MeOH-H2O (MeOH = methanol) at 120 °C gave rise to three coordination polymers, [Zn12(µ4-O)3L9]n (1), [CdL(H2O)]n (2) and [Pb3(µ4-O)L2]n (3). Compounds 1-3 are characterized by elemental analysis, IR, powder X-ray diffraction and single-crystal X-ray diffraction. Compound 1 has two similar tetranuclear [Zn4(µ4-O)(µ2-CO2)6] units as nodes and displays an intriguing three-dimensional (3D) 6-connected network with a 4(12)6(3) topology. Compound 2 exhibits a 3D framework constructed by linking infinite helical Cd-carboxylate chains through L ligands. Compound 3 holds a 3D structure in which each hexanuclear [Pb6(µ4-O)2(CO2)4] unit works as a six-connecting node to connect its equivalent ones via sharing L ligands. In addition, the fluorescent properties and thermal stabilities of 1-3 were also investigated.

20.
Biosens Bioelectron ; 43: 155-9, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23298627

RESUMEN

Glycoproteins play important roles in a wide variety of biological processes. The change in the concentration levels has been associated with many cancers, as well as other diseases. Thus, rapid, sensitive and selective determination of glycoproteins is much preferred. In this work, we reported a sandwich-type electrochemical biosensor based on dual-amplification of 4-mercaptophenylboronic acid (MBA)-capped gold nanoparticles (MBA-AuNPs) and dopamine (DA)-capped AuNPs (DA-AuNPs). Biological recognition elements such as synthetic receptor and aptamer immobilized onto gold electrodes were used to capture glycoproteins. The captured glycoproteins were then derivatized with MBA-AuNPs through the formation of tight covalent bonds between the boronic acids of MBA-AuNPs and diols of glycoproteins. Electroactive DA-AuNPs were attached by the anchored MBA-AuNPs via the interaction of boronic acids with DA tags, which facilities the amplified voltammetric detection of glycoproteins. With avidin and prostate specific antigen (PSA) as model analytes, we demonstrated the feasibility and sensitivity of the proposed method. The results indicated that sub-picomolar avidin/PSA can be readily measured. We believe that this strategy will be valuable for the electrochemical detection of other glycoproteins.


Asunto(s)
Técnicas Biosensibles/instrumentación , Ácidos Borónicos/química , Conductometría/instrumentación , Dopamina/química , Glicoproteínas/análisis , Oro/química , Nanopartículas del Metal/química , Electrodos , Diseño de Equipo , Análisis de Falla de Equipo , Glicoproteínas/química , Nanopartículas del Metal/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...