Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Org Lett ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958212

RESUMEN

The chemical modification of the achiral carbon nanohoops to break the symmetry will result in inherently chiral structures with interesting optical properties. Herein, we report two novel π-extended chiral macrocycles, cyclo[10]paraphenylene-pyrene ([10]CPP-2Pyrene) and cyclo[10]paraphenylene-hexa-peri-hexabenzocoronene ([10]CPP-2HBC). The large substituents on the nanohoop peripheries effectively prevented free rotation and the racemization process. The conformation of each enantiomer is stable enough to be resolved by recycling HPLC.

2.
Angew Chem Int Ed Engl ; : e202407551, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38881501

RESUMEN

Phosphorene and fullerene are representative two-dimensional (2D) and zero-dimensional (0D) nanomaterials respectively, constructing their heterodimensional hybrid not only complements their physiochemical properties but also extends their applications via synergistic interactions. This is however challenging because of their diversities in dimension and chemical reactivity, and theoretical studies predicted that it is improbable to directly bond C60 onto the surface of phosphorene due to their strong repulsion. Here, we develop a facile electrosynthesis method to synthesize the first phosphorene-fullerene hybrid featuring fullerene surface bonding via P-C bonds. Few-layer black phosphorus nanosheets (BPNSs) obtained from electrochemical exfoliation react with C602- dianion prepared by electroreduction of C60, fulfilling formation of the "improbable" phosphorene-fullerene hybrid (BPNS-s-C60). Theoretical results reveal that the energy barrier for formation of [BPNS-s-C60]2- intermediate is significantly decreased by 1.88 eV, followed by an oxidization reaction to generate neutral BPNS-s-C60 hybrid. Surface bonding of C60 molecules not only improves significantly the ambient stability of BPNSs, but also boosts dramatically the visible light and near-infrared (NIR) photocatalytic hydrogen evolution rates, reaching 1466 and 1039 µmol h-1 g-1 respectively, which are both the highest values among all reported BP-based metal-free photocatalysts.

3.
Angew Chem Int Ed Engl ; : e202407078, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38771270

RESUMEN

Herein, we report the synthesis of a novel intramolecular donor-acceptor (D-A) system ([12]CPP-8TPAOMe) based on cycloparaphenylenes (CPPs) grafted with eight di(4-methoxyphenyl)amino groups (TPAOMe) as donors. Compared to [12]CPP, D-A nanohoop exhibited significant changes in physical properties, including a large redshift (>78 nm) in the fluorescence spectrum and novel positive solvatofluorochromic properties with a maximum peak ranging from 484 nm to 546 nm. The potential applications of [12]CPP-8TPAOMe in electron- and hole-transport devices were further investigated, and its bipolar behavior as a charge transport active layer was clearly observed.

4.
Angew Chem Int Ed Engl ; 63(29): e202407034, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38708741

RESUMEN

Chirality, a fundamental principle in chemistry, biology, and medicine, is prevalent in nature and in organisms. Chiral molecules, such as DNA, RNA, and proteins, are crucial in biomolecular synthesis, as well as in the development of functional materials. Among these, 1,1'-binaphthyl-2,2'-diol (BINOL) stands out for its stable chiral configuration, versatile functionality, and commercial availability. BINOL is widely employed in asymmetric catalysis and chiral materials. This review mainly focuses on recent research over the past five years concerning the use of BINOL derivatives for constructing chiral macrocycles and cages. Their contributions to chiral luminescence, enantiomeric separation, transmembrane transport, and asymmetric catalysis were examined.

5.
J Org Chem ; 89(11): 8255-8261, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38771292

RESUMEN

Herein we report the construction of an inherently chiral carbon nanoring, cyclo[7]paraphenylene-2,9-rubicene ([7]CPPRu2,9), by combining rubicene with a C-shaped synthon through the Suzuki-Miyaura coupling reaction. The structure was fully confirmed by high-resolution mass spectroscopies (HR-MS) and various NMR techniques. The photophysical properties were investigated by UV-vis absorption and fluorescence spectroscopy as well as the time-resolved fluorescence decay. Moreover, two enantiomers (M)/(P)-[7]CPPRu2,9 were successfully resolved by recyclable HPLC and studied by CD and CPL spectra.

6.
Nat Commun ; 15(1): 2684, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38538576

RESUMEN

It is a long-standing scientific controversy to achieve anti-Kasha-type multiple emissions by tuning the structures at a molecular level. Although it is known that some conjugated structures have excitation-dependent multiple emissions, no all-benzenoid molecules have yet been reported, the emissions of which originate from different excited states. Herein, we report the design of two symmetry-breaking heterogeneous carbon bisnanohoops that in solution become multiple fluorescent emitters with unusual anti-Kasha characteristics. This phenomenon can be spectroscopically and theoretically explained and will find applications in a wide range of sensing and imaging technologies.

7.
Nat Commun ; 15(1): 150, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167842

RESUMEN

Metal carbido complexes bearing single-carbon-atom ligand such as nitrogenase provide ideal models of adsorbed carbon atoms in heterogeneous catalysis. Trimetallic µ3-carbido clusterfullerenes found recently represent the simplest metal carbido complexes with the ligands being only carbon atoms, but only few are crystallographically characterized, and its formation prerequisite is unclear. Herein, we synthesize and isolate three vanadium-based µ3-CCFs featuring V = C double bonds and high valence state of V (+4), including VSc2C@Ih(7)-C80, VSc2C@D5h(6)-C80 and VSc2C@D3h(5)-C78. Based on a systematic theoretical study of all reported µ3-carbido clusterfullerenes, we further propose a supplemental Octet Rule, i.e., an eight-electron configuration of the µ3-carbido ligand is needed for stabilization of metal carbido clusters within µ3-carbido clusterfullerenes. Distinct from the classic Effective Atomic Number rule based on valence electron count of metal proposed in the 1920s, this rule counts the valence electrons of the single-carbon-atom ligand, and offers a general rule governing the stabilities of µ3-carbido clusterfullerenes.

8.
Adv Mater ; 35(51): e2304121, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37805835

RESUMEN

Encapsulating photoluminescent lanthanide ions like erbium (Er) into fullerene cages affords photoluminescent endohedral metallofullerenes (EMFs). Few reported photoluminescent Er-EMFs are all based on encapsulation of multiple (two to three) metal atoms, whereas mono-Er-EMFs exemplified by Er@C82 are not photoluminescent due to its narrow optical bandgap. Herein, by entrapping an Er-cyanide cluster into various C82 cages to form novel Er-monometallic cyanide clusterfullerenes (CYCFs), ErCN@C82 (C2 (5), Cs (6), and C2 v (9)), the photoluminescent properties of CYCFs are investigated, and obvious near-infrared (NIR) photoluminescence only is observed for ErCN@C2 (5)-C82 . Combined with a comparative photoluminescence study of three medium-bandgap di-Er-EMFs, including Er2 @Cs (6)-C82 , Er2 O@Cs (6)-C82 , and Er2 C2 @Cs (6)-C82 , this study proposes that the optical bandgap can be used as a simple criterion for switching the photoluminescence of Er-EMFs, and the bandgap threshold is determined to be between 0.83 and 0.74 eV. Furthermore, the photoluminescent patterns of these three di-Er-EMFs differ dramatically. It is found that the location of the Er atom within the same Cs (6)-C82 cage is almost fixed and independent on the endo-unit; thus the previous statement on the key role of metal position in photoluminescence of di-Er-EMFs seems erroneous, and the geometric configuration of the endo-unit, especially the bridging mode of two Er ions, is decisive instead.

9.
Nat Commun ; 14(1): 5831, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37730724

RESUMEN

Riemann surfaces inspired chemists to design and synthesize such multidimensional curved carbon architectures. It has been predicted that carbon nanosolenoid materials with Riemann surfaces have unique structures and novel physical properties. Here we report the first synthesis of a nitrogen-doped carbon nanosolenoid (N-CNS) using bottom-up approach with a well-defined structure. N-CNS was obtained by a rational Suzuki polymerization, followed by oxidative cyclodehydrogenation. The successful synthesis of N-CNS was fully characterized by GPC, FTIR, solid-state 13C NMR and Raman techniques. The intrinsic single-strand molecular structures of N-CNS helices can be clearly resolved using low-dose integrated differential phase contrast scanning transmission electron microscopy (iDPC-STEM) technique. Possessing unique structural and physical properties, this long π-extended polymer N-CNS can provide new insight towards bottom-up syntheses of curved nanoribbons and potential applications as a metal-free photocatalyst for visible-light-driven H2 evolution and highly efficient photocatalyst for photoredox organic transformations.

10.
Angew Chem Int Ed Engl ; 62(40): e202311352, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37592375

RESUMEN

A few-layer fullerene network possesses several advantageous characteristics, including a large surface area, abundant active sites, high charge mobility, and an appropriate band gap and band edge for solar water splitting. Herein, we report for the first time that the few-layer fullerene network shows interesting photocatalytic performance in pure water splitting into H2 and H2 O2 in the absence of any sacrificial reagents. Under optimal conditions, the H2 and H2 O2 evolution rates can reach 91 and 116 µmol g-1 h-1 , respectively, with good stability. This work demonstrates the novel application of the few-layer fullerene network in the field of energy conversion.

11.
Chem Sci ; 14(20): 5425-5430, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37234903

RESUMEN

Supramolecular behavior is highly dependent on many factors, including complicated microenvironments and weak interactions. Herein, we describe tuning supramolecular architectures of rigid macrocycles by synergistic effects of their geometric configurations, sizes, and guests. Two paraphenylene-based macrocycles are anchored onto different positions in a triphenylene derivative, resulting in dimeric macrocycles with different shapes and configurations. Interestingly, these dimeric macrocycles show tunable supramolecular interactions with guests. In solid state, a 2 : 1 host-guest complex was observed between 1a and C60/C70, while an unusual 2 : 3 host-guest complex 3C60@(1b)2 can be observed between 1b and C60. This work expands the scope of the synthesis of novel rigid bismacrocycles and provides a new strategy to construct different supramolecular systems.

12.
Sci Adv ; 9(22): eadg4346, 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37256956

RESUMEN

In aromatic systems with large π-conjugated structures, armchair and zigzag configurations can affect each material's electronic properties, determining their performance and generating certain quantum effects. Here, we explore the intrinsic effect of armchair and zigzag pathways on charge transport through single hexabenzocoronene molecules. Theoretical calculations and systematic experimental results from static carbon-based single-molecule junctions and dynamic scanning tunneling microscope break junctions show that charge carriers are preferentially transported along the hexabenzocoronene armchair pathway, and thus, the corresponding current through this pathway is approximately one order of magnitude higher than that through the zigzag pathway. In addition, the molecule with the zigzag pathway has a smaller energy gap. In combination with its lower off-state conductance, it shows a better field-effect performance because of its higher on-off ratio in electrical measurements. This study on charge transport pathways offers a useful perspective for understanding the electronic properties of π-conjugated systems and realizing high-performance molecular nanocircuits toward practical applications.

13.
ACS Appl Mater Interfaces ; 15(17): 20686-20696, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37095453

RESUMEN

Photothermal therapy (PTT) triggered by near-infrared-II (NIR-II, 1000-1700 nm) light is developed as a potential tumor therapy technique with deeper tissue penetration capacity and higher allowable laser power density of the skin than NIR-I (750-1000 nm) biowindow. Black phosphorus (BP) with excellent biocompatibility and favorable biodegradability demonstrates promising applications in PTT but suffers from low ambient stability and limited photothermal conversion efficiency (PCE), and utilization of BP in NIR-II PTT is scarcely reported. Herein, we develop novel fullerene covalently modified few-layer BP nanosheets (BPNSs) with ∼9-layer thickness through an easy one-step esterification process (abbreviated BP-ester-C60), bringing about the dramatically enhanced ambient stability of BPNSs due to bonding of the hydrophobic C60 with high stability and the lone electron pair on the phosphorus atom. BP-ester-C60 is then applied as a photosensitizer in NIR-II PTT, delivering a much higher PCE than the pristine BPNSs. Under 1064 nm NIR-II laser irradiation, in vitro and in vivo antitumor studies reveal that BP-ester-C60 exhibits dramatically enhanced PTT efficacy with considerable biosafety relative to the pristine BPNSs. This is interpreted by the boost of NIR light absorption on account of the modulation of the band energy level resulting from intramolecular electron transfer from BPNSs to C60.


Asunto(s)
Fulerenos , Nanopartículas , Fulerenos/farmacología , Terapia Fototérmica , Fósforo/química , Fármacos Fotosensibilizantes/química , Ésteres , Fototerapia/métodos , Nanopartículas/química
14.
Org Lett ; 25(7): 1183-1187, 2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36786519

RESUMEN

Herein, we report the facile synthesis and properties of a chiral perylene diimide (PDI)-embedded conjugated macrocycle (cyclo[6]paraphenylene-1,7-perylene diimide, [6]CPP-PDI1,7) by Pd-catalyzed Suzuki coupling and a subsequent reductive aromatization reaction in two steps. The PDI-embedded conjugated macrocycle showed a significant redshift (>110 nm for absorption) compared to the PDI molecule. Moreover, efficient resolution of chiral enantiomers with (P)/(M)-[6]CPP-PDI1,7 was achieved by high-performance liquid chromatography, and their chiral properties were investigated by circular dichroism spectroscopy. The realization of [6]CPP-PDI1,7 expands the scope of the precise synthesis of PDI-embedded chiral conjugated macrocycles and explores its unique physical properties.

15.
Nat Commun ; 14(1): 293, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36653339

RESUMEN

Electrophilic aromatic substitution (EAS) is one of the most fundamental reactions in organic chemistry. Using an oriented external electric field (OEEF) instead of traditional reagents to tune the EAS reactivity can offer an environmentally friendly method to synthesize aromatic compounds and hold the promise of broadening its scope. Despite these advantages, OEEF catalysis of EAS is difficult to realize, due to the challenge of microscopically orienting OEEF along the direction of electron reorganizations. In this work, we demonstrate OEEF-catalyzed EAS reactions in a series of cycloparaphenylenes (CPPs) using the scanning tunneling microscope break junction (STM-BJ) technique. Crucially, the unique radial π-conjugation of CPPs enables a desired alignment for the OEEF to catalyze the EAS with Au STM tip (or substrate) acting as an electrophile. Under mild conditions, the OEEF-catalyzed EAS reactions can cleave the inherently inert C(sp2)-C(sp2) bond, leading to high-yield (~97%) formation of linear oligophenylenes terminated with covalent Au-C bonds. These results not only demonstrate the feasibility of OEEF catalysis of EAS, but also offer a way of exploring new mechanistic principles of classic organic reactions aided by OEEF.

16.
Sci Adv ; 8(51): eade4692, 2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36563157

RESUMEN

Carbon nanobelts (CNBs) are a new form of nanocarbon that has promising applications in optoelectronics due to their unique belt-shaped π-conjugated systems. Recent synthetic breakthrough has led to the access to various CNBs, but their optoelectronic properties have not been explored yet. In this work, we study the electronic transport performance of a series of CNBs by incorporating them into molecular devices using the scanning tunneling microscope break junction technique. We show that, by tuning the bridging groups between the adjacent benzenes in the CNBs, we can achieve remarkably high conductance close to 0.1 G0, nearly one order of magnitude higher than their nanoring counterpart cycloparaphenylene. Density functional theory-based calculations further elucidate the crucial role of the structural distortion played in facilitating the unique radial π-electron delocalization and charge transport across the belt-shaped carbon skeletons. These results develop a basic understanding of electronic transport properties of CNBs and lay the foundation for further exploration of CNB-based optoelectronic applications.

17.
Org Lett ; 24(51): 9463-9467, 2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36541687

RESUMEN

Two enantiomers with helical carbon frameworks (M-HCFa and P-HCFa) and their conformational isomers (M-HCFb and P-HCFb) have been synthesized and characterized. The single-crystal analysis revealed the novel structures in which three propeller blades spiro-fused on two central benzene rings. The optical properties were further investigated, and stable bipolar electrochemiluminescence emissions were discovered for the first time existing in helical carbon frameworks, which provide new insights into the future development of high-performance molecular luminescent devices.

18.
Chem Commun (Camb) ; 58(59): 8278-8281, 2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35790128

RESUMEN

Herein, we report the selective synthesis, characterization, and photophysical properties of two novel chiral carbon macrocycles. Non-planar (S)-2,2'-bis(methoxymethoxy)-1,1'-binaphthalene was introduced into the scaffold of oligo-paraphenylenes to achieve the chirality in these macrocycles. Their photophysical properties were investigated by steady-state and time-resolved spectroscopies, as well as circular dichroism and circularly polarized luminescence spectroscopies. We demonstrate that the emission maxima of the chiral macrocycles are redshifted compared to chiral binaphthyl units and that macrocycles show chiroptical properties (|glum| > 1.0 × 10-3).

19.
Nat Commun ; 13(1): 3543, 2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35729154

RESUMEN

In the literature, organic materials with both aggregation-induced emission (AIE) and aggregation-caused quenching (ACQ) effects that can emit with multiple bands both in the solution and aggregated state are rarely reported. Herein we report a novel chiral dual-emissive bismacrocycle with tunable aggregation-induced emission colors. A facile four-step synthesis strategy is developed to construct this rigid bismacrocycle, (1,4)[8]cycloparaphenylenophane (SCPP[8]), which possesses a 1,2,4,5-tetraphenylbenzene core locked by two intersecting polyphenylene-based macrocycles. The luminescent behavior of SCPP[8] shows the unique characteristics of both ACQ effect and AIE effect, inducing remarkable redshift emission with near white-light emission. SCPP[8] is configurationally stable and possesses a novel shape-persistent bismacrocycle scaffold with a high strain energy. In addition, SCPP[8] displays enhanced circularly polarized luminescence properties due to AIE effect.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...