Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Asunto principal
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 7474, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37978294

RESUMEN

Due to their intrinsic high reactivity, isolation of tin(0) complexes remains challenging. Herein, we report the synthesis of a silylene-stabilized ditin(0) complex (2) by reduction of a silylene-supported dibromostannylene (1) with 1 equivalent of magnesium (I) dimer in toluene. The structure of 2 was established by single crystal X-ray diffraction analysis. Density Functional Theory calculations revealed that complex 2 bears a Sn=Sn double bond and one lone pair of electrons on each of the Sn(0) atoms. Remarkably, complex 2 is readily methylated to give a mixed-valent methylditin cation (4), which undergoes topomerization in solution though a reversible 1,2-Me migration along a Sn=Sn bond. Computational studies showed that the three-coordinate Sn atom in 4 is the dominant electrophilic center, and allows for facile reaction with KHBBus3 furnishing an unprecedented N-heterocyclic silylenes-stabilized distannavinylidene (5). The synthesis of 2, 4 and 5 demonstrates the exceptional ability of N-heterocyclic silylenes to stabilize low valent tin complexes.

2.
Angew Chem Int Ed Engl ; 61(20): e202115570, 2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35132739

RESUMEN

Synthesis and reactivity of disilicon(0) complexes are of fundamental and application importance. Herein, we report the development of an N-heterocyclic imino-substituted silylene (1), which has strong σ-donating ability and is significantly sterically hindered. The one-pot reaction of this silylene with [IPr→SiCl2 ] (IPr=1,3-bis(2,6-diisopropylphenyl)-imidazol-2-ylidene) and KC8 (2 equiv) in THF at -30 °C leads to a silylene-ligated disilicon(0) complex (2), isolated as red crystals in 60 % yield. Characterization data and DFT calculations show that the trans-bent Si4 skeleton in 2 features a Si0 =Si0 double bond with significant π-π bonding and one lone pair of electrons on each of these two Si0 atoms. Complex 2 reacts readily with phenylacetylene, producing a structurally intriguing silatricyclic complex 6,8-diaza-1,2,5-trisilatricyclo-[3.2.1.02,7 ]-oct-3-ene (3), and revealing new aspects of low-valent silicon chemistry.

3.
Angew Chem Int Ed Engl ; 61(7): e202114598, 2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-34766416

RESUMEN

Herein, we report the efficient degradation of N2 O with a well-defined bis(silylene)amido iron complex as catalyst. The deoxygenation of N2 O using the iron silanone complex 4 as a catalyst and pinacolborane (HBpin) as a sacrificial reagent proceeds smoothly at 50 °C to form N2 , H2 , and (pinB)2 O. Mechanistic studies suggest that the iron-silicon cooperativity is the key to this catalytic transformation, which involves N2 O activation, H atom transfer, H2 release and oxygenation of the boron sites. This approach has been further developed to enable catalytic reductions of nitro compounds, producing amino-boranes with good functional-group tolerance and excellent chemoselectivity.

4.
Nat Commun ; 11(1): 792, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-32034155

RESUMEN

Acyclic contiguous stereocenters are frequently seen in biologically active natural and synthetic molecules. Although various synthetic methods have been reported, predictable and unified approaches to all possible stereoisomers are rare, particularly for those containing non-reactive hydrocarbon substituents. Herein, a ß-boronyl group is employed as a readily accessible handle for predictable α-functionalization of enolates with either syn or anti selectivity depending on reaction conditions. Contiguous tertiary-tertiary and tertiary-quaternary stereocenters are thus accessed in generally good yields and diastereoselectivity. Based on experimental and computational studies, mechanism for syn selective alkylation is proposed, and Bpin (pinacolatoboronyl) behaves as a smaller group than most carbon-centered groups. The synthetic utility of this methodology is demonstrated by preparation of several key intermediates for bioactive molecules.

5.
Chem Sci ; 10(16): 4509-4514, 2019 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-31057780

RESUMEN

The secondary amine participating asymmetric reductive amination remains an unsolved problem in organic synthesis. Here we show for the first time that secondary amines are capable of effectively serving as N-sources in direct asymmetric reductive amination to afford corresponding tertiary chiral amines with the help of a selected additive set under mild conditions (0-25 °C). The applied chiral phosphoramidite ligands are readily prepared from BINOL and easily modified. Compared with common tertiary chiral amine synthetic methods, this procedure is much more concise and scalable, as exemplified by the facile synthesis of rivastigmine and N-methyl-1-phenylethanamine.

6.
Molecules ; 23(9)2018 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-30200331

RESUMEN

In this article we demonstrate how asymmetric total synthesis of (S)-rivastigmine has been achieved using direct asymmetric reductive amination as the key transformation in four steps. The route started with readily available and cheap m-hydroxyacetophenone, through esterification, asymmetric reductive amination, N-diphenylmethyl deprotection and reductive amination, to provide the final (S)-rivastigmine in 82% overall yield and 96% enantioselectivity. In the asymmetric reductive amination, catalysed by the iridium⁻phosphoramidite ligand complex and helped by some additives, the readily prepared 3-acetylphenyl ethyl(methyl)carbamate directly reductively coupled with diphenylmethanamine to yield the chiral amine product in 96% ee and 93% yield.


Asunto(s)
Rivastigmina/síntesis química , Aminación , Evaluación Preclínica de Medicamentos , Ligandos , Oxidación-Reducción , Rivastigmina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...