Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Crit Rev Clin Lab Sci ; : 1-17, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773736

RESUMEN

This article comprehensively elucidates the discovery of Krebs von den Lungen-6 (KL-6), its structural features, functional mechanisms, and the current research status in various respiratory system diseases. Discovered in 1985, KL-6 was initially considered a tumor marker, but its elevated levels in interstitial lung disease (ILD) led to its recognition as a relevant serum marker for ILD. KL-6 is primarily produced by type 2 alveolar epithelial cell regeneration. Over the past 30 years since the discovery of KL-6, the number of related research papers has steadily increased annually. Following the coronavirus disease 2019 (COVID-19) pandemic, there has been a sudden surge in relevant literature. Despite KL-6's potential as a biomarker, its value in the diagnosis, treatment, and prognosis varies across different respiratory diseases, including ILD, idiopathic pulmonary fibrosis (IPF), COVID-19, and lung cancer. Therefore, as an important serum biomarker in respiratory system diseases, the value of KL-6 still requires further investigation.

2.
Comput Biol Med ; 177: 108628, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38810476

RESUMEN

BACKGROUND AND OBJECTIVE: The metabolic syndrome induced by obesity is closely associated with cardiovascular disease, and the prevalence is increasing globally, year by year. Obesity is a risk marker for detecting this disease. However, current research on computer-aided detection of adipose distribution is hampered by the lack of open-source large abdominal adipose datasets. METHODS: In this study, a benchmark Abdominal Adipose Tissue CT Image Dataset (AATCT-IDS) containing 300 subjects is prepared and published. AATCT-IDS publics 13,732 raw CT slices, and the researchers individually annotate the subcutaneous and visceral adipose tissue regions of 3213 of those slices that have the same slice distance to validate denoising methods, train semantic segmentation models, and study radiomics. For different tasks, this paper compares and analyzes the performance of various methods on AATCT-IDS by combining the visualization results and evaluation data. Thus, verify the research potential of this data set in the above three types of tasks. RESULTS: In the comparative study of image denoising, algorithms using a smoothing strategy suppress mixed noise at the expense of image details and obtain better evaluation data. Methods such as BM3D preserve the original image structure better, although the evaluation data are slightly lower. The results show significant differences among them. In the comparative study of semantic segmentation of abdominal adipose tissue, the segmentation results of adipose tissue by each model show different structural characteristics. Among them, BiSeNet obtains segmentation results only slightly inferior to U-Net with the shortest training time and effectively separates small and isolated adipose tissue. In addition, the radiomics study based on AATCT-IDS reveals three adipose distributions in the subject population. CONCLUSION: AATCT-IDS contains the ground truth of adipose tissue regions in abdominal CT slices. This open-source dataset can attract researchers to explore the multi-dimensional characteristics of abdominal adipose tissue and thus help physicians and patients in clinical practice. AATCT-IDS is freely published for non-commercial purpose at: https://figshare.com/articles/dataset/AATTCT-IDS/23807256.


Asunto(s)
Grasa Abdominal , Tomografía Computarizada por Rayos X , Humanos , Tomografía Computarizada por Rayos X/métodos , Grasa Abdominal/diagnóstico por imagen , Masculino , Femenino , Bases de Datos Factuales , Algoritmos , Radiómica
3.
Comput Biol Med ; 173: 108342, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522249

RESUMEN

BACKGROUND AND OBJECTIVE: Intracerebral hemorrhage is one of the diseases with the highest mortality and poorest prognosis worldwide. Spontaneous intracerebral hemorrhage (SICH) typically presents acutely, prompt and expedited radiological examination is crucial for diagnosis, localization, and quantification of the hemorrhage. Early detection and accurate segmentation of perihematomal edema (PHE) play a critical role in guiding appropriate clinical intervention and enhancing patient prognosis. However, the progress and assessment of computer-aided diagnostic methods for PHE segmentation and detection face challenges due to the scarcity of publicly accessible brain CT image datasets. METHODS: This study establishes a publicly available CT dataset named PHE-SICH-CT-IDS for perihematomal edema in spontaneous intracerebral hemorrhage. The dataset comprises 120 brain CT scans and 7,022 CT images, along with corresponding medical information of the patients. To demonstrate its effectiveness, classical algorithms for semantic segmentation, object detection, and radiomic feature extraction are evaluated. The experimental results confirm the suitability of PHE-SICH-CT-IDS for assessing the performance of segmentation, detection and radiomic feature extraction methods. RESULTS: This study conducts numerous experiments using classical machine learning and deep learning methods, demonstrating the differences in various segmentation and detection methods on the PHE-SICH-CT-IDS. The highest precision achieved in semantic segmentation is 76.31%, while object detection attains a maximum precision of 97.62%. The experimental results on radiomic feature extraction and analysis prove the suitability of PHE-SICH-CT-IDS for evaluating image features and highlight the predictive value of these features for the prognosis of SICH patients. CONCLUSION: To the best of our knowledge, this is the first publicly available dataset for PHE in SICH, comprising various data formats suitable for applications across diverse medical scenarios. We believe that PHE-SICH-CT-IDS will allure researchers to explore novel algorithms, providing valuable support for clinicians and patients in the clinical setting. PHE-SICH-CT-IDS is freely published for non-commercial purpose at https://figshare.com/articles/dataset/PHE-SICH-CT-IDS/23957937.


Asunto(s)
Edema Encefálico , Humanos , Edema Encefálico/diagnóstico por imagen , Benchmarking , Radiómica , Semántica , Edema , Hemorragia Cerebral/diagnóstico por imagen , Tomografía Computarizada por Rayos X
4.
Biomater Adv ; 156: 213693, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37992478

RESUMEN

Biodegradable stents can support vessels for an extended period, maintain vascular patency, and progressively degrade once vascular remodeling is completed, thereby reducing the constraints of traditional metal stents. An ideal degradable stent must have good mechanical properties, degradation behavior, and biocompatibility. Zinc has become a new type of biodegradable metal after magnesium and iron, owing to its suitable degradation rate and good biocompatibility. However, zinc's poor strength and ductility make it unsuitable as a vascular stent material. Therefore, this paper reviewed the primary methods for improving the overall properties of zinc. By discussing the mechanical properties, degradation behavior, and biocompatibility of various improvement strategies, we found that alloying is the most common, simple, and effective method to improve mechanical properties. Deformation processing can further improve the mechanical properties by changing the microstructures of zinc alloys. Surface modification is an important means to improve the biological activity, blood compatibility and corrosion resistance of zinc alloys. Meanwhile, structural design can not only improve the mechanical properties of the vascular stents, but also endow the stents with special properties such as negative Poisson 's ratio. Manufacturing zinc alloys with excellent degradation properties, improved mechanical properties and strong biocompatibility and exploring their mechanism of interaction with the human body remain areas for future research.


Asunto(s)
Materiales Biocompatibles , Zinc , Humanos , Materiales Biocompatibles/uso terapéutico , Implantes Absorbibles , Aleaciones , Stents , Magnesio/farmacología , Magnesio/uso terapéutico
5.
J Funct Biomater ; 14(11)2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37998116

RESUMEN

Current research on the fatigue properties of degradable zinc alloy stents has not yet considered the issue of the fatigue life changing with material properties during the dynamic degradation process. Therefore, in this paper, we established a fatigue damage algorithm to study the fatigue problem affected by the changing of material properties during the dynamic degradation process of the stent under the action of pulsating cyclic loading. Three models: the dynamic degradation model, the dynamic degradation model under pulsating cyclic loading, and the coupled model of fatigue damage and dynamic degradation, were developed to verify the effect of fatigue damage on stent life. The results show that fatigue damage leads to a deeper degree of inhomogeneous degradation of the stent, which affects the service life of the stent. Fatigue damage is a factor that cannot be ignored. Therefore, when studying the mechanical properties and lifetime of degradable stents, incorporating fatigue damage into the study can help more accurately assess the lifetime of the stents.

6.
Comput Biol Med ; 165: 107388, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37696178

RESUMEN

Colorectal Cancer (CRC) is currently one of the most common and deadly cancers. CRC is the third most common malignancy and the fourth leading cause of cancer death worldwide. It ranks as the second most frequent cause of cancer-related deaths in the United States and other developed countries. Histopathological images contain sufficient phenotypic information, they play an indispensable role in the diagnosis and treatment of CRC. In order to improve the objectivity and diagnostic efficiency for image analysis of intestinal histopathology, Computer-aided Diagnosis (CAD) methods based on machine learning (ML) are widely applied in image analysis of intestinal histopathology. In this investigation, we conduct a comprehensive study on recent ML-based methods for image analysis of intestinal histopathology. First, we discuss commonly used datasets from basic research studies with knowledge of intestinal histopathology relevant to medicine. Second, we introduce traditional ML methods commonly used in intestinal histopathology, as well as deep learning (DL) methods. Then, we provide a comprehensive review of the recent developments in ML methods for segmentation, classification, detection, and recognition, among others, for histopathological images of the intestine. Finally, the existing methods have been studied, and the application prospects of these methods in this field are given.


Asunto(s)
Medicina , Diagnóstico por Computador , Procesamiento de Imagen Asistido por Computador , Intestinos , Aprendizaje Automático
7.
J Funct Biomater ; 14(8)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37623643

RESUMEN

The Special Issue entitled "Biomechanical Study and Analysis for Cardiovascular/Skeletal Materials and Devices" addresses biological functional materials and devices relevant to cardiovascular diseases and orthopedic conditions [...].

8.
J Orthop Res ; 41(11): 2394-2404, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37138390

RESUMEN

Dynamization, that is, increasing interfragmentary movement (IFM) by reducing fixation stiffness from a rigid to a more flexible state, has been successfully used in clinical practice to promote fracture healing. However, it remains unclear how dynamization timing and degree affect bone healing of different fracture types. Finite element models of tibial fractures based on the OTA/AO classification (Simple: A1-Spiral, A2-Oblique, A3-Transverse; Wedge: B2-Spiral, B3-Fragmented; Complex: C2-Segment, C3-Irregular), in combination with fuzzy logic-based mechano-regulatory tissue differentiation algorithms, were used to simulate the healing process when dynamization of varied degrees (dynamization coefficient or DC = 0-0.9; 0.9 represents 90% reduction in the fixation stiffness relative to a rigid fixation) were applied at different time points after fracture. The fuzzy logic-based algorithms have been validated with a preclinical animal model. The results showed that the healing responses of type A fractures were more sensitive to the changes in dynamization degree and timing comparing with type B or C fractures. Additionally, the optimal dynamization regime for each fracture type was different. For type A fractures, a moderate dynamization degree (e.g., DC = 0.5) applied after Week 1 promoted the recovery of biomechanical integrity. For type B and C fractures, the effective dynamization included a greater dynamization degree (DC = 0.7) applied after Week 2. Our results further demonstrated that the fracture morphology affected interfragmentary strain environments within the callus, leading to varied healing results for different fracture types. These results suggest that the effects of dynamization are highly dependent of the fracture types. Therefore, specific dynamization strategies should be chosen for different fracture types to achieve optimal healing outcomes.


Asunto(s)
Fijación Interna de Fracturas , Fracturas de la Tibia , Animales , Fenómenos Biomecánicos , Fijación Interna de Fracturas/métodos , Curación de Fractura/fisiología , Fracturas de la Tibia/cirugía , Movimiento
9.
J Funct Biomater ; 14(4)2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37103302

RESUMEN

Bone has a special structure that is both stiff and elastic, and the composition of bone confers it with an exceptional mechanical property. However, bone substitute materials that are made of the same hydroxyapatite (HA) and collagen do not offer the same mechanical properties. It is important for bionic bone preparation to understand the structure of bone and the mineralization process and factors. In this paper, the research on the mineralization of collagen is reviewed in terms of the mechanical properties in recent years. Firstly, the structure and mechanical properties of bone are analyzed, and the differences of bone in different parts are described. Then, different scaffolds for bone repair are suggested considering bone repair sites. Mineralized collagen seems to be a better option for new composite scaffolds. Last, the paper introduces the most common method to prepare mineralized collagen and summarizes the factors influencing collagen mineralization and methods to analyze its mechanical properties. In conclusion, mineralized collagen is thought to be an ideal bone substitute material because it promotes faster development. Among the factors that promote collagen mineralization, more attention should be given to the mechanical loading factors of bone.

10.
Biochem Biophys Res Commun ; 639: 134-141, 2023 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-36493556

RESUMEN

In cyanobacteria and algae (but not plants), flavodoxin (Fld) replaces ferredoxin (Fd) under stress conditions to transfer electrons from photosystem I (PSI) to ferredoxin-NADP+ reductase (FNR) during photosynthesis. Fld constitutes a small electron carrier noncovalently bound to flavin mononucleotide (FMN), and also an ideal model for revealing the protein/flavin-binding mechanism because of its relative simplicity compared to other flavoproteins. Here, we report two crystal structures of apo-Fld from Synechococcus sp. PCC 7942, one dimeric structure of 2.09 Å and one monomeric structure of 1.84 Å resolution. Analytical ultracentrifugation showed that in solution, apo-Fld exists both as monomers and dimers. Our dimer structure contains two ligand-binding pockets separated by a distance of 45 Å, much longer than the previous structures of FMN-bound dimers. These results suggested a potential dimer-monomer transition mechanism of cyanobacterial apo-Fld. We further propose that the dimer represents the "standby" state to stabilize itself, while the monomer constitutes the "ready" state to bind FMN. Furthermore, we generated a new docking model of cyanobacterial Fld-FNR complex based on the recently reported cryo-EM structures, and mapped the special interactions between Fld and FNR in detail.


Asunto(s)
Anabaena , Cianobacterias , Flavodoxina/química , Flavodoxina/metabolismo , Ferredoxinas/metabolismo , Anabaena/metabolismo , Flavoproteínas , Ferredoxina-NADP Reductasa/química , Cianobacterias/metabolismo , Oxidación-Reducción
11.
Front Bioeng Biotechnol ; 10: 1062529, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36452211

RESUMEN

Percutaneous coronary intervention with stent implantation is one of the most commonly used approaches to treat coronary artery stenosis. Stent malapposition (SM) can increase the incidence of stent thrombosis, but the quantitative association between SM distance and stent thrombosis is poorly clarified. The objective of this study is to determine the biomechanical reaction mechanisms underlying stent thrombosis induced by SM and to quantify the effect of different SM severity grades on thrombosis. The thrombus simulation was performed in a continuous model based on the diffusion-convection response of blood substance transport. Simulated models included well-apposed stents and malapposed stents with various severities where the detachment distances ranged from 0 to 400 µm. The abnormal shear stress induced by SM was considered a critical contributor affecting stent thrombosis, which was dependent on changing SM distances in the simulation. The results illustrate that the proportion of thrombus volume was 1.88% at a SM distance of 75 µm (mild), 3.46% at 150 µm, and 3.93% at 400 µm (severe), but that a slight drop (3.18%) appeared at the detachment distance of 225 µm (intermediate). The results indicate that when the SM distance was less than 150 µm, the thrombus rose notably as the gap distance increased, whereas the progression of thrombogenicity weakened when it exceeded 150 µm. Therefore, more attention should be paid when SM is present at a gap distance of 150 µm. Moreover, when the SM length of stents are the same, thrombus tends to accumulate downstream towards the distal end of the stent as the SM distance increases.

12.
Medicine (Baltimore) ; 101(50): e31572, 2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36550895

RESUMEN

To explore the effects and safety of low dose of esketamine combined with propofol in elderly patients undergoing fibronchoscopy. Eighty elderly patients who underwent painless fibronchoscopy in our hospital from June 2021 to September 2021 were recruited,and randomly divided into experimental group (esketamine 0.15mg/ kg + propofol 1mg/ kg) and control group (sufentanil 0.1 µg/ kg + propofol 1mg/ kg), with 40 cases in each group. There were significant differences in MAP, HR and SpO2 of T2, T3 and T4 between the experimental and control groups (P < .05). Besides, there were significantly differences on the trend of change between the 2 groups, with a small and relatively stable fluctuation in the experimental group (P < .05). Compared with the control group, the total dosage of propofol in the experimental group was significantly lower, and the number of vasoactive drugs, the incidence of respiratory depression and bronchospasm were significantly lower (P < .05). There was no significant difference in microscopic examination time, wake-up time, visual analogue score, and agitation, mental symptoms, increased secretion, nausea and vomiting, choking cough and laryngeal spasm during awakening period between the 2 groups. The incidence of total adverse reactions in the experimental group were strongly lower than those in control group. (P < .05). Low dose of esketamine combined with propofol can be safely used for fibronchoscopy in elderly patients, with good effects, more stable respiration and circulation, and low incidence of adverse reactions.


Asunto(s)
Ketamina , Propofol , Humanos , Anciano , Propofol/efectos adversos , Ketamina/efectos adversos , Sufentanilo
13.
Comput Methods Programs Biomed ; 227: 107232, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36371976

RESUMEN

BACKGROUND AND OBJECTIVE: Distraction osteogenesis (DO), a bone lengthening technique, is widely employed to treat congenital and acquired limb length discrepancies and large segmental bone defects. However, a major issue of DO is the prolonged consolidation phase (10-36 months) during which patients must wear a cumbersome external fixator. Attempts have been made to accelerate the healing process of DO by an alternating distraction and compression mode (so-called "accordion" technique or AT). However, it remains unclear how varied AT parameters affect DO outcomes and what the most effective AT mode is. METHODS: Based on an experimentally-verified mechanobiological model, we performed a parametric analysis via in silico simulation of the bone regeneration process of DO under different AT modes, including combinations of varied application times (AT began at week 1-8 of the consolidation phase), durations (AT was used continuously for 1 week, 2 weeks or 4 weeks) and rates (distraction or compression at 0.25, 0.5, 0.75, and 1 mm/12 h). The control group had no AT applied during the consolidation phase. RESULTS: Compared with the control group (no AT), AT applied at an early consolidation stage (e.g. week 1 of the consolidation phase) significantly enhanced bone formation and reduced the overall healing time. However, the effect of AT on bone healing was dependent on its duration and rate. Specifically, a moderate rate of AT (e.g. 0.5 mm/12 h) lasting for two weeks promoted blood perfusion recovery and bone regeneration, ultimately shortening the healing time. Conversely, over-high rates (e.g. 1 mm/12 h) and longer durations (e.g. 4 weeks) of AT adversely affected bone regeneration and blood perfusion recovery, thereby delaying bone bridging. CONCLUSIONS: These results suggest that the therapeutic effects of AT on DO are highly dependent of the AT parameters of choice. Under appropriate durations and rates, the AT applied at an early consolidation phase is beneficial for blood recovery and bone regeneration. These results may provide a basis for selecting effective AT modes to accelerate consolidation and reduce the overall treatment period of DO.


Asunto(s)
Osteogénesis por Distracción , Humanos , Osteogénesis por Distracción/métodos , Regeneración Ósea , Cicatrización de Heridas , Osteogénesis
14.
J Funct Biomater ; 13(4)2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36278633

RESUMEN

Traditional inert materials used in internal fixation have caused many complications and generally require removal with secondary surgeries. Biodegradable materials, such as magnesium (Mg)-, iron (Fe)- and zinc (Zn)-based alloys, open up a new pathway to address those issues. During the last decades, Mg-based alloys have attracted much attention by researchers. However, the issues with an over-fast degradation rate and release of hydrogen still need to be overcome. Zn alloys have comparable mechanical properties with traditional metal materials, e.g., titanium (Ti), and have a moderate degradation rate, potentially serving as a good candidate for internal fixation materials, especially at load-bearing sites of the skeleton. Emerging Zn-based alloys and composites have been developed in recent years and in vitro and in vivo studies have been performed to explore their biodegradability, mechanical property, and biocompatibility in order to move towards the ultimate goal of clinical application in fracture fixation. This article seeks to offer a review of related research progress on Zn-based biodegradable materials, which may provide a useful reference for future studies on Zn-based biodegradable materials targeting applications in orthopedic internal fixation.

15.
J Funct Biomater ; 13(3)2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36135587

RESUMEN

Most of the studies on the finite element analysis (FEA) of biodegradable vascular stents (BVSs) during the degradation process have limited the accuracy of the simulation results due to the application of the uniform degradation model. This paper aims to establish an FEA model for the non-uniform degradation of BVSs by considering factors such as the dynamic changes of the corrosion properties and material properties of the element, as well as the pitting corrosion and stress corrosion. The results revealed that adjusting the corrosion rate according to the number of exposed surfaces of the element and reducing the stress threshold according to the corrosion status accelerates the degradation time of BVSs by 26% and 25%, respectively, compared with the uniform degradation model. The addition of the pitting model reduces the service life of the BVSs by up to 12%. The effective support of the stent to the vessel could reach at least 60% of the treatment effect before the vessel collapsed. These data indicate that the proposed non-uniform degradation model of BVSs with multiple factors produces different phenomena compared with the commonly used models and make the numerical simulation results more consistent with the real degradation scenario.

16.
Biofabrication ; 14(4)2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36041425

RESUMEN

For guided bone regeneration (GBR) in clinical orthopedics, the importance of a suitable scaffold which can provide the space needed for bone regeneration and simultaneously promotes the new bone formation cannot be overemphasized. Due to its excellent biocompatibility, mechanical strength, and similarity in structure and composition to natural bone, the mineralized collagen-based scaffolds have been increasingly considered as promising GBR scaffolds. Herein, we propose a novel method to fabricate anin-situmineralized homogeneous collagen-based scaffold (IMHCS) with excellent osteogenic capability for GBR by electrospinning the collagen solution in combination with essential mineral ions. The IMHCS exhibited homogeneous distribution of apatite crystals in electrospun fibers, which helped to achieve a significantly higher tensile strength than the pure collagen scaffold (CS) and the scaffold with directly added nano-hydroxyapatite particles (HAS). Furthermore, the IMHCS had significantly better cell compatibility, cell migration ratio, and osteogenic differentiation property than the HAS and CS. Therefore, the IMHCS not only retains traditional function of inhibiting fibroblast invasion, but also possesses excellent osteogenic differentiation property, indicating a robust alternative for GBR applications.


Asunto(s)
Osteogénesis , Andamios del Tejido , Regeneración Ósea , Colágeno/química , Durapatita/química , Andamios del Tejido/química
17.
Bone Res ; 10(1): 59, 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36042209

RESUMEN

The bone matrix plays an indispensable role in the human body, and its unique biomechanical and mechanobiological properties have received much attention. The bone matrix has unique mechanical anisotropy and exhibits both strong toughness and high strength. These mechanical properties are closely associated with human life activities and correspond to the function of bone in the human body. None of the mechanical properties exhibited by the bone matrix is independent of its composition and structure. Studies on the biomechanics of the bone matrix can provide a reference for the preparation of more applicable bone substitute implants, bone biomimetic materials and scaffolds for bone tissue repair in humans, as well as for biomimetic applications in other fields. In providing mechanical support to the human body, bone is constantly exposed to mechanical stimuli. Through the study of the mechanobiology of the bone matrix, the response mechanism of the bone matrix to its surrounding mechanical environment can be elucidated and used for the health maintenance of bone tissue and defect regeneration. This paper summarizes the biomechanical properties of the bone matrix and their biological significance, discusses the compositional and structural basis by which the bone matrix is capable of exhibiting these mechanical properties, and studies the effects of mechanical stimuli, especially fluid shear stress, on the components of the bone matrix, cells and their interactions. The problems that occur with regard to the biomechanics and mechanobiology of the bone matrix and the corresponding challenges that may need to be faced in the future are also described.

18.
J Funct Biomater ; 13(2)2022 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35645265

RESUMEN

Mineralized collagen is the basic unit in hierarchically organized natural bone with different structures. Polyacrylic acid (PAA) and periodic fluid shear stress (FSS) are the most common chemical and physical means to induce intrafibrillar mineralization. In the present study, non-mineralized collagen, extrafibrillar mineralized (EM) collagen, intrafibrillar mineralized (IM) collagen, and hierarchical intrafibrillar mineralized (HIM) collagen induced by PAA and FSS were prepared, respectively. The physical and chemical properties of these mineralized collagens with different microstructures were systematically investigated afterwards. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) showed that mineralized collagen with different microstructures was prepared successfully. The pore density of the mineralized collagen scaffold is higher under the action of periodic FSS. Fourier transform infrared spectroscopy (FTIR) analysis showed the formation of the hydroxyapatite (HA) crystal. A significant improvement in the pore density, hydrophilicity, enzymatic stability, and thermal stability of the mineralized collagen indicated that the IM collagen under the action of periodic FSS was beneficial for maintaining collagen activity. HIM collagen fibers, which are prepared under the co-action of periodic FSS and sodium tripolyphosphate (TPP), may pave the way for new bone substitute material applications.

19.
Biomed Res Int ; 2022: 1376659, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35663041

RESUMEN

Objective: Image texture information was extracted from enhanced magnetic resonance imaging (MRI) and pathological hematoxylin and eosin- (HE-) stained images of female breast cancer patients. We established models individually, and then, we combine the two kinds of data to establish model. Through this method, we verified whether sufficient information could be obtained from enhanced MRI and pathological slides to assist in the determination of epidermal growth factor receptor (EGFR) mutation status in patients. Methods: We obtained enhanced MRI data from patients with breast cancer before treatment and selected diffusion-weighted imaging (DWI), T1 fast-spin echo (T1 FSE), and T2 fast-spin echo (T2 FSE) as the data sources for extracting texture information. Imaging physicians manually outlined the 3D regions of interest (ROIs) and extracted texture features according to the gray level cooccurrence matrix (GLCM) of the images. For the HE staining images of the patients, we adopted a specific normalization algorithm to simulate the images dyed with only hematoxylin or eosin and extracted textures. We extracted texture features to predict the expression of EGFR. After evaluating the predictive power of each model, the models from the two data sources were combined for remodeling. Results: For enhanced MRI data, the modeling of texture information of T1 FSE had a good predictive effect for EGFR mutation status. For pathological images, eosin-stained images can achieve a better prediction effect. We selected these two classifiers as the weak classifiers of the final model and obtained good results (training group: AUC, 0.983; 95% CI, 0.95-1.00; accuracy, 0.962; specificity, 0.936; and sensitivity, 0.979; test group: AUC, 0.983; 95% CI, 0.94-1.00; accuracy, 0.943; specificity, 1.00; and sensitivity, 0.905). Conclusion: The EGFR mutation status of patients with breast cancer can be well predicted based on enhanced MRI data and pathological data. This helps hospitals that do not test the EGFR mutation status of patients with breast cancer. The technology gives clinicians more information about breast cancer, which helps them make accurate diagnoses and select suitable treatments.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Eosina Amarillenta-(YS) , Receptores ErbB/genética , Femenino , Hematoxilina , Humanos , Imagen por Resonancia Magnética/métodos , Mutación/genética , Estudios Retrospectivos
20.
Gels ; 8(5)2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35621578

RESUMEN

Poly(N-isopropylacrylamide) (PNIPAM) based electrically conductive hydrogels (PNIPAM-ECHs) have been extensively studied in recent decades due to their thermal-responsive (leading to the volume change of hydrogels) and electrically conductive performance. The incorporation of conductive components into the PNIPAM hydrogel network makes it become conductive hydrogel, and as a result, the PNIPAM hydrogel could become sensitive to an electrical signal, greatly expanding its application. In addition, conductive components usually bring new stimuli-responsive properties of PNIPAM-based hydrogels, such as near-infrared light and stress/strain responsive properties. PNIPAM-ECHs display a wide range of applications in human motion detection, actuators, controlled drug release, wound dressings, etc. To summarize recent research advances and achievements related to PNIPAM-ECHs, this manuscript first reviews the design and structure of representative PNIPAM-ECHs according to their conductive components. Then, the applications of PNIPAM-ECHs have been classified and discussed. Finally, the remaining problems related to PNIPAM-ECHs have been summarized and a future research direction is proposed which is to fabricate PNIPAM-ECHs with integrated multifunctionality.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...