RESUMEN
Background: Near-infrared photoimmunotherapy (NIR-PIT) is an emerging cancer treatment technology that combines the advantages of optical technology and immunotherapy to provide a highly effective, precise, and low side-effect treatment approach. The aim of this study is to visualize the scientific results and research trends of NIR-PIT based on bibliometric analysis methods. Methods: The Web of Science Core Collection (WoSCC) database was searched in August 2024 for relevant publications in the field of NIR-PIT. Data were analyzed using mainly CiteSpace and R software for bibliometric and visual analysis of the country/region, authors, journals, references and keywords of the publications in the field. Results: A total of 245 publications were retrieved, including articles (n = 173, 70.61%) and reviews (n = 72, 29.39%). The annual and cumulative number of publications increased every year. The highest number of publications was from the United States (149, 60.82%), followed by Japan (70, 28.57%) and China (33, 13.47%). The research institution with the highest number of publications was National Institutes of Health (NIH)-USA (114, 46.53%). Kobayashi H (109) was involved in the highest number of publications, Mitsunaga M (211) was the most frequently cited in total. CANCERS (17) was the most frequently published journal, and NAT MED (220) was the most frequently co-cited journal. The top 10 keywords include near-infrared photoimmunotherapy (166), photodynamic therapy (61), monoclonal antibody (58), in vivo (50), cancer (46), expression (31), breast cancer (27), enhanced permeability (24), antibody (23), growth factor receptor (16). Cluster analysis based on the co-occurrence of keywords resulted in 13 clusters, which identified the current research hotspots and future trends of NIR-PIT in cancer treatment. Conclusion: This study systematically investigated the research hotspots and development trends of NIR-PIT in cancer treatment through bibliometric and visual analysis. As an emerging strategy, the research on the application of NIR-PIT in cancer treatment has significantly increased in recent years, mainly focusing on the targeting, immune activation mechanism, and treatment efficacy in solid tumors has received extensive attention. Future studies may focus on improving the efficacy and safety of NIR-PIT in cancer treatment, as well as developing novel photosensitizers and combination therapeutic regimens, and exploring the efficacy of its application in a wide range of solid tumors, which will provide an important reference and guidance for the application of NIR-PIT in clinical translation.
RESUMEN
BACKGROUND: Cervical ripening is a multifactorial outcome, and the association between cervical ripening and vaginal microbiota remains unexplored in term primiparous women. A new sequencing technology, microbiome 2bRAD sequencing (2bRAD-M) that provides a higher level of species discrimination compared to amplicon sequencing. We applied 2bRAD-M to analyze the vaginal microbiota in a population with variations in cervical ripeness and to explore potential microbiota factors influencing cervical ripening. METHODS: A total of 30 full-term primigravid women participated in this study, with 15 belonging to the low scoring group of cervical ripeness and 15 to the high scoring group. Clinical information was collected from the participants, and the vaginal microbiota and community structure of both groups were analyzed using 2bRAD-M sequencing. Microbiota diversity and differential analyses were conducted to explore potential factors influencing cervical ripening. RESULTS: A total of 605 species were detected. There was no difference in vaginal microbiota diversity between the two groups, and the vaginal microbial composition was structurally similar. In the two groups, Lactobacillus crispatus and Lactobacillus iners were identified as the two pivotal species through random forest analysis. Concurrent, extensive and close connections between species within the two groups were observed in the correlation analysis, influencing the aforementioned two species. Pairwise comparisons showed that Sphingomonas (P = 0.0017) and three others were abundant in high scoring group, while Alloprevotella (P = 0.0014), Tannerella (P = 0.0033), Bacteroides (P = 0.0132), Malassezia (P = 0.0296), Catonella (P = 0.0353) and Pseudomonas (P = 0.0353) and so on showed higher abundance in low scoring group. Linear discriminant analysis effect size identified 29 discriminative feature taxa. CONCLUSION: For the first time, vaginal microbiota was sequenced using 2bRAD-M. With a relatively simple structure, a more stable vaginal microbiota is associated with higher cervical ripeness, and certain microorganisms, such as Sphingomonas, may play a beneficial role in cervical ripening.
Asunto(s)
Bacterias , Microbiota , Vagina , Humanos , Femenino , Vagina/microbiología , Microbiota/genética , Embarazo , Adulto , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Cuello del Útero/microbiología , Adulto Joven , Lactobacillus/genética , Lactobacillus/aislamiento & purificación , Lactobacillus/clasificación , Lactobacillus crispatus/genética , Lactobacillus crispatus/aislamiento & purificación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN/métodosRESUMEN
BACKGROUND: Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the gastrointestinal tract, but the molecular mechanisms underlying IBD are incompletely understood. In this study, we explored the role and regulating mechanism of otubain 2 (OTUB2), a deubiquitinating enzyme, in IBD. METHODS: To study the function of OTUB2 in IBD, we generated Otub2-/- mice and treated them with dextran sulfate sodium (DSS) to induce experimental colitis. Bone marrow transplantation was performed to identify the cell populations that were affected by OTUB2 in colitis. The molecular mechanism of OTUB2 in signal transduction was studied by various biochemical methods. RESULTS: OTUB2 was highly expressed in colon-infiltrating macrophages in both humans with IBD and mice with DSS-induced experimental colitis. Colitis was significantly aggravated in Otub2-/- mice and bone marrow chimeric mice receiving Otub2-/- bone marrow. OTUB2-deficiency impaired the production of cytokines and chemokines in macrophages in response to the NOD2 agonist muramyl dipeptide (MDP). Upon MDP stimulation, OTUB2 promoted NOD2 signaling by stabilizing RIPK2. Mechanistically, OTUB2 inhibited the proteasomal degradation of RIPK2 by removing K48-linked polyubiquitination on RIPK2, which was mediated by the active C51 residue in OTUB2. In mice, OTUB2 ablation abolished the protective effects of MDP administration in colitis. CONCLUSION: This study identified OTUB2 as a novel regulator of intestinal inflammation.
Asunto(s)
Proteína Adaptadora de Señalización NOD2 , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor , Transducción de Señal , Animales , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/metabolismo , Ratones , Proteína Adaptadora de Señalización NOD2/metabolismo , Humanos , Colitis/metabolismo , Colitis/inducido químicamente , Modelos Animales de Enfermedad , Ratones Noqueados , Ratones Endogámicos C57BL , Inflamación/metabolismo , UbiquitinaciónRESUMEN
The circadian clock is crucial for maintaining lipid metabolism homeostasis in mammals. Despite the economic importance of fat content in poultry, research on the regulatory effects and molecular mechanisms of the circadian clock on avian hepatic lipid metabolism has been limited. In this study, we observed significant diurnal variations (P<0.05) in triglyceride (TG), free fatty acids (FFA), fatty acid synthase (FAS), and total cholesterol (TC) levels in the chicken embryonic liver under 12-h light/12-h dark incubation conditions, with TG, FFA, and TC concentrations showing significant cosine rhythmic oscillations (P<0.05). However, such rhythmic variations were not observed under complete darkness incubation conditions. Using transcriptome sequencing technology, we identified 157 genes significantly upregulated at night and 313 genes significantly upregulated during the 12-h light/12-h dark cycle. These circadian differential genes are involved in processes and pathways such as lipid catabolic process regulation, meiotic cell cycle, circadian rhythm regulation, positive regulation of the MAPK cascade, and glycerolipid metabolism. Weighted gene co-expression network analysis (WGCNA) revealed 3 modules-green, blue, and red-that significantly correlate with FFA, FAS, and TG, respectively. Genes within these modules were enriched in processes and pathways including the cell cycle, light stimulus response, circadian rhythm regulation, phosphorylation, positive regulation of the MAPK cascade, and lipid biosynthesis. Notably, we identified ten hub genes, including protein kinase C delta (PRKCD), polo like kinase 4 (PLK4), clock circadian regulator (CLOCK), steroid 5 alpha-reductase 3 (SRD5A3), BUB1 mitotic checkpoint serine/threonine kinase (BUB1B), shugoshin 1 (SGO1), NDC80 kinetochore complex component (NDC80), NIMA related kinase 2 (NEK2), minichromosome maintenance complex component 4 (MCM4), polo like kinase 1 (PLK1), potentially link circadian regulation with lipid metabolic homeostasis. These findings demonstrate the regulatory role of the circadian clock in chicken liver lipid metabolism homeostasis and provide a theoretical basis and molecular targets for optimizing the circadian clock to reduce excessive fat deposition in chickens, which is significant for the healthy development of the poultry industry.
RESUMEN
Background: Existing research lacks information on the potential impacts of multi-phased coronavirus disease 2019 (COVID-19) vaccine rollouts on population mental health. This study aims to evaluate the impact of various COVID-19 vaccine rollout phases on trends and prevalence of anxiety and depression among US adults at a population level. Methods: We performed a US population-based multi-intervention interrupted time series analysis through Deep Learning and autoregressive integrated moving average (ARIMA) approaches, analyzing 4 waves of US CDC's Behavioral Risk Factor Surveillance System (BRFSS) data (January 2019-February 2023) to assess changes in the weekly prevalence of anxiety and depression following interruptions, including all major COVID-19 vaccine rollout phases from 2020 to early 2023 while considering pandemic-related events. Findings: Among 1,615,643 US adults (1,011,300 [76.4%] aged 18-64 years, 867,826 [51.2%] female, 126,594 [16.9%] Hispanic, 120,380 [11.9%] non-Hispanic Black, 1,191,668 [61.7%] non-Hispanic White, and 113,461 [9.5%] other non-Hispanic people of color), we found that three COVID-19 vaccine rollout phases (ie, prioritization for educational/childcare workers, boosters for all US adults, authorization for young children) were associated with a 0.93 percentage-point (95% CI -1.81 to -0.04, p = 0.041), 1.28 percentage-point (95% CI -2.32 to -0.24, p = 0.017), and 0.89 percentage-point (95% CI -1.56 to -0.22, p = 0.010) reduction, respectively, in anxiety and depression prevalence among the general US adult population despite an upward trend in the prevalence of anxiety and depression from 2019 to early 2023. Among different population groups, Phase 1 was associated with increases in anxiety and depression prevalence among Black/African Americans (2.26 percentage-point, 95% CI 0.24-4.28, p = 0.029), other non-Hispanic people of color (2.68 percentage-point, 95% CI 0.36-5.00, p = 0.024), and lower-income individuals (3.95 percentage-point, 95% CI 2.20-5.71, p < 0.0001). Interpretation: Our findings suggest disparate effects of phased COVID-19 vaccine rollout on mental health across US populations, underlining the need for careful planning in future strategies for phased disease prevention and interventions. Funding: None.
RESUMEN
Introduction: Deaf students have more difficulties with emotion regulation due to their hearing loss. They are suffering higher socio-emotional risk than the hearing person. But there are few studies explored the neural mechanisms of impaired emotion regulation in the deaf college students. Methods: Thirty hearing college students and 27 deaf college students completed the emotion regulation task while recording ERP data and subjective emotion intensity. Results: Behavioral results found that deaf college students had higher emotional experience intensity compared to healthy controls. The ERP results showed the deaf college students had lower LPP amplitudes both using reappraisal and suppression strategies. Moreover, the LPP of expression suppression was associated with the increase of depression scores among deaf college students. Discussion: Deaf college students may have impaired emotion regulation so that they are more accustomed to using expression suppression strategies to regulate their negative emotions which lead to high risk to be depression.
RESUMEN
Inflammatory bowel disease (IBD) is a disorder causing chronic inflammation in the gastrointestinal tract, and its pathophysiological mechanisms are still under investigation. Here, we find that mice deficient of YOD1, a deubiquitinating enzyme, are highly susceptible to dextran sulfate sodium (DSS)-induced colitis. The bone marrow transplantation experiment reveals that YOD1 derived from hematopoietic cells inhibits DSS colitis. Moreover, YOD1 exerts its protective role by promoting nucleotide-binding oligomerization domain 2 (NOD2)-mediated physiological inflammation in macrophages. Mechanistically, YOD1 inhibits the proteasomal degradation of receptor-interacting serine/threonine kinase 2 (RIPK2) by reducing its K48 polyubiquitination, thereby increasing RIPK2 abundance to enhance NOD2 signaling. Consistently, the protective function of muramyldipeptide, a NOD2 ligand, in experimental colitis is abolished in mice deficient of YOD1. Importantly, YOD1 is upregulated in colon-infiltrating macrophages in patients with colitis. Collectively, this study identifies YOD1 as a novel regulator of colitis.
RESUMEN
Lake microbiota play a crucial role in geochemical cycles, influencing both energy flow and material production. However, the distribution patterns of bacterial communities in lake sediments remain largely unclear. In this study, we used 16S rRNA high-throughput sequencing technology to investigate the bacterial structure and diversity in sediments across different locations (six independent lakes) within Lianhuan Lake and analyzed their relationship with environmental factors. Our findings revealed that both the alpha and beta diversity of sediment bacterial communities varied significantly among the six independent lakes. Furthermore, changes between lakes had a significant impact on the relative abundance of bacterial phyla, such as Pseudomonadota and Chloroflexota. The relative abundance of Pseudomonadota was highest in Habuta Lake and lowest in Xihulu Lake, while Chloroflexota abundance was lowest in Habuta Lake and highest in Tiehala Lake. At the genus level, the relative abundance of Luteitalea was highest in Xihulu Lake compared to the other five lakes, whereas the relative abundances of Clostridium, Thiobacillus, and Ilumatobacter were highest in Habuta Lake. Mantel tests and heatmaps revealed that the relative abundance of Pseudomonadota was significantly negatively correlated with pH, while the abundance of Chloroflexota was significantly positively correlated with total phosphorus and total nitrogen in water, and negatively correlated with electrical conductivity. In conclusion, this study significantly enhances our understanding of bacterial communities in the different lakes within the Lianhuan Lake watershed.
RESUMEN
In brief: During pregnancy and delivery, the myometrium was affected by hypoxia stress, which acts as a regulator of cell proliferation. The proliferation of uterine smooth muscle cells in pregnant mice was inhibited under hypoxia, which was related to the up-regulated autophagy through the mTOR pathway. Abstract: Hypoxia is closely associated with physiological and pathological conditions in the human body, and the myometrium is affected by hypoxic stress during pregnancy and delivery. Autophagy is a catabolic pathway involved in the regulation of apoptosis, proliferation, and migration of a variety of cells, which can be activated under hypoxia. However, the mechanism and function of autophagy in uterine smooth muscle cells remained unclear. The aim of this study was to investigate the changes in autophagy in pregnant uterine smooth muscle cells (pUSMCs) under hypoxia and the effect of autophagy on myometrial cellscell proliferation during pregnancy. In this study, primary uterine smooth muscle cells were isolated from mice in late pregnancy and cultured under normoxic and hypoxic conditions, respectively. Western blotting and immunofluorescence were used to detect the expression levels of autophagy-related proteins LC3B, P62, mTOR, and p-mTOR under different culture conditions. Cell proliferation was assessed by CCK-8 assay. In addition, 3-methyladenine (3-MA) was used to inhibit autophagy in hypoxia-treated pUSMCs, and MHY1485 was used to activate mTOR. Studies have confirmed that under hypoxic conditions, autophagy is enhanced and cell proliferative viability is reduced in pUSMCs. The autophagy inhibitor 3-MA restored cell proliferation inhibited by hypoxia. Furthermore, hypoxia in pUSMCs led to a downregulation of p-mTOR/mTOR levels. The mTOR activator MHY1485 inhibited autophagy by preventing the binding of autophagosomes to lysosomes and reversed the hypoxia-induced inhibition of cell proliferation. Collectively, our results indicate that hypoxia upregulates autophagy through the mTOR pathway in pUSMCs, thereby inhibiting cell proliferation during pregnancy.
Asunto(s)
Autofagia , Proliferación Celular , Miometrio , Transducción de Señal , Serina-Treonina Quinasas TOR , Femenino , Animales , Embarazo , Serina-Treonina Quinasas TOR/metabolismo , Ratones , Miometrio/metabolismo , Miometrio/citología , Miometrio/patología , Miocitos del Músculo Liso/metabolismo , Hipoxia/metabolismo , Células Cultivadas , Hipoxia de la CélulaRESUMEN
Fiber length (FL) and strength (FS) are the core indicators for evaluating cotton fiber quality. The corresponding stages of fiber elongation and secondary wall thickening are of great significance in determining FL and FS formation, respectively. QTL mapping and high-throughput sequencing technology have been applied to dissect the molecular mechanism of fiber development. In this study, 15 cotton chromosome segment substitution lines (CSSLs) with significant differences in FL and FS, together with their recurrent parental Gossypium hirsutum line CCRI45 and donor parent G. barbadense line Hai1, were chosen to conduct RNA-seq on developing fiber samples at 10 days post anthesis (DPA) and 20 DPA. Differentially expressed genes (DEGs) were obtained via pairwise comparisons among all 24 samples (each one with three biological repeats). A total of 969 DEGs related to FL-high, 1285 DEGs to FS-high, and 997 DEGs to FQ-high were identified. The functional enrichment analyses of them indicated that the GO terms of cell wall structure and ROS, carbohydrate, and phenylpropanoid metabolism were significantly enriched, while the GO terms of glucose and polysaccharide biosynthesis, and brassinosteroid and glycosylphosphatidylinositol metabolism could make great contributions to FL and FS formation, respectively. Weighted gene co-expressed network analyses (WGCNA) were separately conducted for analyzing FL and FS traits, and their corresponding hub DEGs were screened in significantly correlated expression modules, such as EXPA8, XTH, and HMA in the fiber elongation and WRKY, TDT, and RAC-like 2 during secondary wall thickening. An integrated analysis of these hub DEGs with previous QTL identification results successfully identified a total of 33 candidate introgressive DEGs with non-synonymous mutations between the Gh and Gb species. A common DEG encoding receptor-like protein kinase 1 was reported to likely participate in fiber secondary cell thickening regulation by brassionsteroid signaling. Such valuable information was conducive to enlightening the developing mechanism of cotton fiber and also provided an abundant gene pool for further molecular breeding.
RESUMEN
To better understand the individual differences in fairness, we used event-related potentials (ERPs) to explore the fairness characteristics of deaf college students through the ultimatum game task. Behaviorally, the significant main effect of the proposal type was found, which meant both deaf and hearing college students showed a lower acceptance rate for the more unfair proposal. Interestingly, we found a significant interaction between group and proposal type in the early stage (N1). Moreover, in the deaf college group, N1 (induced by moderately and very unfair proposals) was significantly larger than that of fair proposals. However, we found that deaf college students had smaller amplitudes on P2 and P3 than hearing college students. These results suggested that deaf college students might pursue more equity strongly so they are more sensitive to unfair information in the early stage. In a word, we should provide more fair allocations for deaf college students in our harmonious society.
RESUMEN
Background: Glioblastoma (GBM) is one of the common malignant tumors of the central nervous system (CNS), characterized by rapid proliferation, heterogeneity, aggressiveness, proneness to recurrence after surgery, and poor prognosis. There is increasing evidence that tumorigenesis is inextricably linked to immune escape, and immunotherapy is undoubtedly an important complement to clinical treatment options for GBM, and will be a focus and hot topic in GBM treatment research. The purpose of this study was to visualize and analyze the scientific results and research trends of immunotherapy for GBM. Methods: Publications concerning immunotherapy for GBM were retrieved from the Web of Science Core Collection (WOScc) database. Bibliometric and visual analysis was performed mainly using CiteSpace and R software, and the Online Analysis Platform of Literature Metrology (https://bibliometric.com/app) for countries/regions, authors, journals, references and keywords related to publications in the field. Results: Among totally 3491 publications retrieved in this field, 1613 publications were finally obtained according to the screening criteria, including 1007 articles (62.43%) and 606 reviews (37.57%). The number of publications increased year by year, with an average growth rate (AGR) of 17.41%. Such a number was the largest in the USA (717, 44.45%), followed by China (283, 17.55%), and the USA showed the strongest international collaboration. Among the research institutions, Duke Univ (94, 5.83%) was the largest publisher in the field, followed by Harvard Med Sch (70, 4.34%). In addition, the most prolific authors in this field were OHN H SAMPSON (51) and MICHAEL LIM (43), and the degree of collaboration (DC) between authors was 98.26%. Among the co-cited authors, STUPP R (805) was the most cited author, followed by REARDON DA (448). The journal with the most published publications was FRONTIERS IN IMMUNOLOGY (75), and the most cited journal in terms of co-citation was CLIN CANCER RES (1322), followed by CANCER RES (1230). The high-frequency keyword included glioblastoma (672) and immunotherapy (377). Cluster analysis was performed on the basis of keyword co-occurrence analysis, yielding 17 clusters, based on which the current research status and future trends in the field of immunotherapy for GBM were identified. Conclusion: Immunotherapy is currently a novel treatment strategy for GBM that has attracted much attention. In the future, it is necessary to strengthen cooperation and exchanges between countries and institutions towards relevant research to promote the development of this field. Immunotherapy is expected to be an important part of the future treatment strategy for GBM, and it has already become a hot spot of current research and will be the key focus of future research.
RESUMEN
This study aimed to explore the different characteristics between early-onset severe preeclampsia (ESPE) and late-onset severe preeclampsia (LSPE) to improve pregnancy outcomes. We performed a retrospective cohort study between January 2016 and December 2021. Eligible hospitalized pregnant women with severe preeclampsia were assigned into the early-onset or late-onset group, depending on the gestational age at the time of severe preeclampsia onset (< or ≥ 34 gestational weeks, respectively). The clinical characteristics, laboratory results, maternal complications, and fetal and neonatal outcomes were recorded and compared between the two groups. A total of 1,238 pregnant women were included, with 525 in the early-onset group and 713 in the late-onset group. The late-onset group had more cases of gestational diabetes, whereas the early-onset group had a higher blood pressure, showed more proteinuria, had more liver and renal damage, exhibited more serious adverse maternal, fetal, and neonatal outcomes, was more likely to be admitted to the intensive care unit, and required longer hospital stays (all P < 0.05). In addition, the early-onset group had fewer prenatal care appointments and was more often transferred from a primary or secondary care hospital. The logistic regression analysis showed that a weekly weight gain of > 100 g was a risk factor for ESPE and that fewer prenatal care appointments were a risk factor for ESPE in pregnant women with female fetuses. Moreover, logistic regression analysis indicated that nulliparity and gestational diabetes during the current pregnancy were risk factors for LSPE. In conclusion, compared with the women with LSPE, those with ESPE usually had worse maternal, fetal, and neonatal outcomes. More frequent prenatal screening and care should be provided for pregnant women with high-risk factors.
RESUMEN
The earlobes of chickens exhibit a range of colors, but there has been relatively little research on the formation of structural blue earlobes. Previous results showed that the structural color earlobes were related to the interplay between melanin and collagen in light reflection. To investigate the metabolic differences in these earlobe colors, we conducted nontargeted liquid chromatograph mass spectrometer (LC-MS) for metabolomic sequencing on structural blue (Green and Blue groups) and nonstructural color (Black group) earlobes tissue of Jiangshan black-bone chickens. The content detection in earlobe tissues of different groups shows that there were significant differences in melanin and collagen content between the Black and Green group. The metabolome identified a total of 6,102 mass spectroscopic peaks and ultimately identified 919 annotated metabolites. Variable importance in the projection (VIP) analysis identified the common differential expressed metabolites (DMs) "Tyr Thr Ala Glu" among the 3 groups. By combining those DMs with differentially expressed genes (DEGs) in our previous transcriptome data from the same sample, and associated with KEGG pathway analysis, multiple pathways related to melanogenesis and collagen metabolism were enriched across the 3 groups. By analyzing the metabolites and genes in these pathways, as well as the interaction network diagram of DEGs, we identified some key genes, Wnt Family Member 6 (WNT6), Transcription Factor 7 (TCF7), Proopiomelanocortin (POMC) and Calcium/Calmodulin Dependent Protein Kinase II Alpha (CAMK2A), and some key DMs like DG (11M3/9M5/0:0) and gentisic acid. The differential gene expression and metabolic levels affect the production of melanin and collagen, leading to differences in the content in melanin and the thickness of the collagen layer between earlobe colors, while the thickness of the collagen layer could affect light scattering, ultimately resulting in different colored earlobes in Jiangshan black-bone chickens.
Asunto(s)
Pollos , Pigmentación , Animales , Pollos/genética , Metabolómica , Colágeno/metabolismo , Colágeno/genética , Melaninas/metabolismo , Metaboloma , Pabellón Auricular , ColorRESUMEN
Pregnancy-induced hypertension (PIH), a prominent determinant of maternal mortality and morbidity worldwide, is hindered by the absence of efficacious biomarkers for early diagnosis, contributing to suboptimal outcomes. Here, we explored potential causal relationships between blood metabolites and the risk of PIH using Mendelian randomization (MR). We employed a two-sample univariable MR approach to empirically estimate the causal relationships between 249 circulating metabolites and PIH. Inverse variance weighted, MR-egger, weight median, simple mode, and weighted mode methods were used for causal estimates. The exposure-to-outcome directionality was confirmed with the MR Steiger test. The Bayesian model averaging MR (MR-BMA) method was applied to detect the predominant causal metabolic traits with alignment for pleiotropy effects. In the primary analysis, analyzing 249 metabolites, we identified 25 causally linked to PIH, including 11 lipid-related traits and 6 associated with fatty acid (un)saturation. Importantly, MR-BMA analyses corroborated the total concentration of branched-chain amino acids(total-BCAA) to be the highest rank causal metabolite, followed by leucine (Leu), phospholipids to total lipids ratio in medium LDL (M-LDL-PL-pct), and Val (all P < 0.05). The directionality of causality predicted by univariable MR and MR-BMA for these metabolites remained consistent. This study highlights the causal connection between metabolites and PIH risk. It highlighted BCAAs as the strongest causal candidates warranting further investigation. Since PIH typically occurs in the second and third trimesters, extending these findings could inform earlier strategies to reduce its risk. Directed acyclic graph of the MR framework investigating the causal relationship between metabolites and PIH. MR: Mendelian randomization; GIVs: genetic instrument variables; SNPs: single-nucleotide polymorphism; IVW: inverse variance weighted; WM: weighted median; PIH: pregnancy-induced hypertension; SM: significant metabolite; MR-BMA: Bayesian model averaging MR.
Asunto(s)
Teorema de Bayes , Hipertensión Inducida en el Embarazo , Análisis de la Aleatorización Mendeliana , Humanos , Femenino , Embarazo , Hipertensión Inducida en el Embarazo/sangre , Hipertensión Inducida en el Embarazo/genética , Biomarcadores/sangreRESUMEN
OBJECTIVES: To investigate the mechanism of the effect of acupuncture and moxibustion on improving liver injury in cisplatin (DDP) induced liver injury model mice by observing the changes of inositol-requiring enzyme (IRE) -1 signaling pathway. METHODS: Forty KM mice were randomly divided into control, model, acupuncture and moxibustion groups, with 10 mice in each group. The liver injury model was replicated by intraperitoneal injection of DDP (10 mg/kg). In the acupuncture group and the moxibustion group, acupuncture and moxibustion were performed at "Dazhui"(GV14), and bilateral "Ganshu"(BL18), "Shenshu" (BL23), and "Zusanli"(ST36), respectively for 6 min, once per day for 7 d. The apoptosis of hepatocytes was detected by TUNEL staining. The expression of phosphorylation(p)-IRE-1α, glucose-regulated protein (Grp) 78 and cysteine aspartic protease (Caspase) -12 in liver tissue were detected by immunohistochemistry and Western blot, respectively. The expression levels of Grp78 and Caspase-12 mRNA in liver tissue were detected by quantitative real-time PCR. RESULTS: Compared with the control group, the apoptosis rate of hepatocytes was increased (P<0.05), the positive expression and protein expression of p-IRE-1α, Grp78, and Caspase-12 were increased (P<0.05), the expression levels of Grp78 and Caspase-12 mRNA were increased (P<0.05) in the model group. Compared with the model group, all these indicators showed opposite trends (P<0.05) in the acupuncture and moxibustion groups. CONCLUSIONS: Acupuncture and moxibustion can reduce liver injury due to DDP chemotherapy by modulating IRE-1 signaling pathway, inhibiting the excessive activation of endoplasmic reticulum stress, and reducing liver cell apoptosis.
Asunto(s)
Terapia por Acupuntura , Apoptosis , Cisplatino , Chaperón BiP del Retículo Endoplásmico , Hígado , Moxibustión , Proteínas Serina-Treonina Quinasas , Transducción de Señal , Animales , Ratones , Masculino , Humanos , Hígado/metabolismo , Hígado/lesiones , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Endorribonucleasas/metabolismo , Endorribonucleasas/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/terapia , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Puntos de Acupuntura , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Caspasa 12/metabolismo , Caspasa 12/genética , Hepatocitos/metabolismoRESUMEN
Intrinsic family dynamics are an important factor in the development of children with special needs, and mothers' emotion regulation ability influences children's development to some extent. This study examined the intrinsic mechanism of cognitive reappraisal of emotion regulation strategies affecting the emotion recognition ability of mothers of children with special needs. Results indicated that mothers of children with special needs recognized negative emotions significantly faster than typically developing child mothers. After receiving cognitive reappraisal emotion regulation strategies, they significantly improved emotional recognition of surprise and reduced attention bias towards anger. Overall, mothers of children with special needs may have obvious attention bias towards negative emotions, and cognitive reappraisal can target negative emotions to help them to better improve emotional resilience.
Asunto(s)
Regulación Emocional , Emociones , Madres , Humanos , Femenino , Madres/psicología , Adulto , Niño , Emociones/fisiología , Regulación Emocional/fisiología , Masculino , Cognición/fisiología , Reconocimiento en Psicología/fisiología , Niños con Discapacidad/psicología , Sesgo Atencional/fisiología , Relaciones Madre-Hijo , PreescolarRESUMEN
BACKGROUND: Significant efforts have been devoted to assess the effects of the poly-gamma-glutamic acid (γ-PGA) on crop growth, yield and quality, soil water retention and fertilizer use efficiency. However, few studies have evaluated the effects of γ-PGA on greenhouse gas (GHG) emissions and grain yield from paddy fields with different rice varieties. METHODS: In the present study, a split-plot field experiment was performed to comprehensively evaluate the effects of γ-PGA concentrations (i.e., no application [P0] and 25.0 kg ha-1 of γ-PGA fermentation solution [P1]) and rice varieties (i.e., conventional rice [Huanghuazhan, H], red rice [Gangteyou 8024, R] and black rice [Black indica rice, B]) on the grain yield, GHG emissions, global warming potential (GWP), greenhouse gas intensity (GHGI), net ecosystem economic profit (NEEP) and carbon footprint (CF) during 2022 and 2023 rice-growing seasons in central China. RESULTS: Application of γ-PGA significantly affected the GHGs emissions, NEEP and CF. Compared with P0 treatments, P1 treatments significantly increased the NEEP by 1.2-11.2 %, and decreased the GWP by 12.9-35.4 %, the GHGI by 16.5-35.9 % and the CF by 13.8-26.2 % in 2022-2023. Application of γ-PGA showed a tendency to increase the yield. Under γ-PGA application condition, R treatment exhibited the lowest GWP, GHGI and CF, and the highest yield and NEEP compared with B and H treatments. CONCLUSION: Our results suggest that γ-PGA application is an ecological agricultural management to increase rice yield, reduce greenhouse gas emission and increase economic benefit, and its advantage is more significant for red rice than for other rice varieties.
Asunto(s)
Gases de Efecto Invernadero , Oryza , Oryza/crecimiento & desarrollo , Gases de Efecto Invernadero/análisis , China , Ácido Poliglutámico/análogos & derivados , Agricultura/métodos , Fertilizantes , Grano Comestible/crecimiento & desarrollo , Calentamiento GlobalRESUMEN
The earlobe is a featherless, exposed thickening located beneath the ear canal of chickens, which plays a visual signaling role in age, performance, mental vitality, reproduction, and other aspects. However, despite its importance, there have been few studies on the color differences and formation mechanisms of chicken earlobes, particularly the structurally blue earlobes characteristic of the Jiangshan black-bone chicken. In this study, we explored the physiological mechanisms that may influence the formation of differently colored earlobes using 3 types of earlobes from Jiangshan black-bone chickens: light peacock green (Green group), dark peacock green (Blue group), and dark reddish purple (Black group). All 3 earlobe colors exhibited positive melanin Masson-Fontana staining, and the thickness of collagen fibers in the dermis decreased in the order of Green, Blue, and Black groups. A total of 1,953 differentially expressed genes (DEGs) were detected in the 3 earlobes through mRNA sequencing, among which the GO term "collagen trimer" was significantly enriched in DEGs between groups. Additionally, 716 differentially expressed proteins (DEPs) were identified in the 3 earlobes using 4D-DIA proteomics, with the term "collagen fibril organization" being significantly enriched in DEPs between the Green and Black groups. Integrated analysis of transcriptome and proteome data revealed that 12 DEGs and DEPs were commonly differentially expressed between the Green and Black groups, including the gene LUM (corneal keratan sulfate proteoglycan), which was significantly enriched in the "collagen fibril organization" GO term. In conclusion, our study suggests that LUM plays a crucial role in the formation of peacock green earlobes in Jiangshan black-bone chickens. The high level of LUM in peacock green (Green and Blue groups) may affect collagen nanostructures, leading to a stronger effect of melanin-supported dermal collagen on the production of non-iridescent structural colors through coherent scattering, resulting in a bright structural blue color in Jiangshan black-bone chickens. In contrast, the low expression of LUM in dark reddish purple (Black group) reduces the reflection of non-iridescent structural colors, making the earlobe color appear almost black, similar to melanin.
Asunto(s)
Pollos , Pigmentación , Proteoma , Transcriptoma , Animales , Pollos/fisiología , Pollos/genética , Color , Proteínas Aviares/metabolismo , Proteínas Aviares/genéticaRESUMEN
BACKGROUND: Preoperative pain sensitivity (PPS) can be associated with postsurgical pain. However, estimates of this association are scarce. Confirming this correlation is essential to identifying patients at high risk for severe postoperative pain and for developing analgesic strategy. This systematic review and meta-analysis summarises PPS and assessed its correlation with postoperative pain. METHODS: PubMed, Scopus, Cochrane Library, and PsycINFO were searched up to October 1, 2023, for studies reporting the association between PPS and postsurgical pain. Two authors abstracted estimates of the effect of each method independently. A random-effects model was used to combine data. Subgroup analyses were performed to investigate the effect of pain types and surgical procedures on outcomes. RESULTS: A total of 70 prospective observational studies were included. A meta-analysis of 50 studies was performed. Postoperative pain was negatively associated with pressure pain threshold (PPT; r=-0.15, 95% confidence interval [CI] -0.23 to -0.07]) and electrical pain threshold (EPT; r=-0.28, 95% CI -0.42 to -0.14), but positively correlated with temporal summation of pain (TSP; r=0.21, 95% CI 0.12-0.30) and Pain Sensitivity Questionnaire (PSQ; r=0.25, 95% CI 0.13-0.37). Subgroup analysis showed that only TSP was associated with acute and chronic postoperative pain, whereas PPT, EPT, and PSQ were only associated with acute pain. A multilevel (three-level) meta-analysis showed that PSQ was not associated with postoperative pain. CONCLUSIONS: Lower PPT and EPT, and higher TSP are associated with acute postoperative pain while only TSP is associated with chronic postoperative pain. Patients with abnormal preoperative pain sensitivity should be identified by clinicians to adopt early interventions for effective analgesia. SYSTEMATIC REVIEW PROTOCOL: PROSPERO (CRD42023465727).