Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Plant Signal Behav ; 19(1): 2345983, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38686613

RESUMEN

The hairy root induction system was used to efficiently investigate gene expression and function in plant root. Cucumber is a significant vegetable crop worldwide, with shallow roots, few lateral roots, and weak root systems, resulting in low nutrient absorption and utilization efficiency. Identifying essential genes related to root development and nutrient absorption is an effective way to improve the growth and development of cucumbers. However, genetic mechanisms underlying cucumber root development have not been explored. Here, we report a novel, rapid, effective hairy root transformation system. Compared to the in vitro cotyledon transformation method, this method shortened the time needed to obtain transgenic roots by 13 days. Furthermore, we combined this root transformation method with CRISPR/Cas9 technology and validated our system by exploring the expression and function of CsMYB36, a pivotal gene associated with root development and nutrient uptake. The hairy root transformation system established in this study provides a powerful method for rapidly identifying essential genes related to root development in cucumber and other horticultural crop species. This advancement holds promise for expediting research on root biology and molecular breeding strategies, contributing to the broader understanding and improvements crop growth and development.


Asunto(s)
Cucumis sativus , Proteínas de Plantas , Raíces de Plantas , Plantas Modificadas Genéticamente , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Cucumis sativus/genética , Cucumis sativus/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Regulación de la Expresión Génica de las Plantas , Transformación Genética , Sistemas CRISPR-Cas/genética
2.
Plant Physiol ; 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38447074

RESUMEN

The fruit neck is an important agronomic trait of cucumber (Cucumis sativus). However, the underlying genes and regulatory mechanisms involved in fruit neck development are poorly understood. We previously identified a cucumber yellow green peel (ygp) mutant, whose causal gene is MYB DOMAIN PROTEIN 36 (CsMYB36). This study showed that the ygp mutant exhibited a shortened fruit neck and repressed cell expansion in the fruit neck. Further functional analysis showed that CsMYB36 was also a target gene, and its expression was enriched in the fruit neck. Overexpression of CsMYB36 in the ygp mutant rescued shortened fruit necks. Furthermore, transcriptome analysis and reverse transcription quantitative polymerase chain reaction (RT-qPCR) assays revealed that CsMYB36 positively regulates the expression of an expansin-like A3 (CsEXLA3) in the fruit neck, which is essential for cell expansion. Yeast one-hybrid and dual-LUC assays revealed that CsMYB36 regulates fruit neck elongation by directly binding to the promoter of CsEXLA3. Collectively, these findings demonstrate that CsMYB36 is an important gene in the regulation of fruit neck length in cucumber plants.

3.
Plant Biotechnol J ; 22(6): 1724-1739, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38261466

RESUMEN

Increased planting densities boost crop yields. A compact plant architecture facilitates dense planting. However, the mechanisms regulating compact plant architecture in cucurbits remain unclear. In this study, we identified a cucumber (Cucumis sativus) compact plant architecture (cpa1) mutant from an ethyl methane sulfonate (EMS)-mutagenized library that exhibited distinctive phenotypic traits, including reduced leaf petiole angle and leaf size. The candidate mutation causes a premature stop codon in CsaV3_1G036420, which shares similarity to Arabidopsis HOOKLESS 1 (HLS1) encoding putative histone N-acetyltransferase (HAT) protein and was named CsHLS1. Consistent with the mutant phenotype, CsHLS1 was predominantly expressed in leaf petiole bases and leaves. Constitutive overexpressing CsHLS1 in cpa1 restored the wild-type plant architecture. Knockout of CsHLS1 resulted in reduces leaf petiole angle and leaf size and as well as decreased acetylation levels. Furthermore, CsHLS1 directly interacted with CsSCL28 and negatively regulated compact plant architecture in cucumber. Importantly, CsHLS1 knockout increased the photosynthesis rate and leaf nitrogen in cucumbers, thereby maintaining cucumber yield at normal density. Overall, our research provides valuable genetic breeding resource and gene target for creating a compact plant architecture for dense cucumber planting.


Asunto(s)
Cucumis sativus , Hojas de la Planta , Proteínas de Plantas , Cucumis sativus/genética , Cucumis sativus/crecimiento & desarrollo , Cucumis sativus/anatomía & histología , Cucumis sativus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/anatomía & histología , Hojas de la Planta/metabolismo , Regulación de la Expresión Génica de las Plantas , Fotosíntesis/genética , Mutación , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo
4.
Plant J ; 116(2): 524-540, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37460197

RESUMEN

To improve our understanding of the mechanism underlying cucumber glossiness regulation, a novel cucumber mutant with a glossy peel (Csgp) was identified. MutMap, genotyping, and gene editing results demonstrated that CsSEC23, which is the core component of COPII vesicles, mediates the glossiness of cucumber fruit peel. CsSEC23 is functionally conserved and located in the Golgi and endoplasmic reticulum. CsSEC23 could interact with CsSEC31, but this interaction was absent in the Csgp mutant, which decreased the efficiency of COPII vesicle transportation. Genes related to wax and cutin transport were upregulated in the Csgp mutant, and the cuticle structure of the Csgp-mutant peel became thinner. Moreover, the wax and cutin contents were also changed due to CsSEC23 mutation. Taken together, the results obtained from this study revealed that CsSEC23 mediates cucumber glossiness, and this mediating might be affected by COPII vesicle transportation.

5.
Front Plant Sci ; 13: 971453, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36570936

RESUMEN

Leaf morphology can affect the development and yield of plants by regulating plant architecture and photosynthesis. Several factors can determine the final leaf morphology, including the leaf complexity, size, shape, and margin type, which suggests that leaf morphogenesis is a complex regulation network. The formation of diverse leaf morphology is precisely controlled by gene regulation on translation and transcription levels. To further reveal this, more and more genome data has been published for different kinds of vegetable crops and advanced genotyping approaches have also been applied to identify the causal genes for the target traits. Therefore, the studies on the molecular regulation of leaf morphogenesis in vegetable crops have also been largely improved. This review will summarize the progress on identified genes or regulatory mechanisms of leaf morphogenesis and development in vegetable crops. These identified markers can be applied for further molecular-assisted selection (MAS) in vegetable crops. Overall, the review will contribute to understanding the leaf morphology of different crops from the perspective of molecular regulation and shortening the breeding cycle for vegetable crops.

6.
Neurobiol Stress ; 21: 100503, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36532380

RESUMEN

Post-traumatic stress disorder (PTSD) is a debilitating mental disorder with high morbidity and great social and economic relevance. However, extant pharmacotherapies of PTSD require long-term use to maintain effectiveness and have enormous side effects. The glutamatergic system, especially the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR), is an important target of current research on the mechanism of PTSD. Postsynaptic AMPAR function and expression are known to be increased by (2R, 6R)-hydronorketamine (HNK), the primary metabolite of ketamine. However, whether (2R,6R)-HNK alleviates PTSD-like effects via AMPAR upregulation is yet to be known. In the present study, rats were exposed to single prolonged stress and electric foot shock (SPS&S). Afterwards, gradient concentrations of (2R,6R)-HNK (20, 50, and 100 µM) were administered by intracerebroventricular (i.c.v.) injection. Open field, elevated plus maze, freezing behavior, and forced swimming tests were used to examine PTSD-like symptoms. In addition, the protein levels of GluA1, BDNF and PSD-95 were analyzed using western blotting and immunofluorescence, and the synaptic ultrastructure of the prefrontal cortex (PFC) was observed by transmission electron microscopy. We found that (2R,6R)-HNK changed SPS&S-induced behavioral expression, such as increasing autonomous activity and residence time in the open arm and decreasing immobility time. Likewise, (2R,6R)-HNK (50 µM) increased GluA1, BDNF, and PSD-95 protein expression in the PFC. Changes in synaptic ultrastructure induced by SPS&S were reversed by administration of (2R,6R)-HNK. Overall, we find that (2R,6R)-HNK can ameliorate SPS&S-induced fear avoidance in rats, as well as rat cognates of anxiety and depression. This may be related to GluA1-mediated synaptic plasticity in the PFC.

7.
Breed Sci ; 71(4): 417-425, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34912168

RESUMEN

Seed germination plays an important role in the initial stage of plant growth. However, few related studies focused on lethality after seed germination in plants. In this study, we identified an Ethyl methanesulfonate (EMS) mutagenesis mutant Csleth with abnormal seed germination in cucumber (Cucumis sativus L.). The radicle of the Csleth mutant grew slowly and detached from the cotyledon until 14 d after sowing. Genetic analysis showed that the mutant phenotype of Csleth was controlled by a single recessive gene. MutMap+ and Kompetitive Allele Specific PCR (KASP) genotyping results demonstrated that Csa3G104930 encoding 3-deoxy-manno-octulosonate cytidylyltransferase (CsKDO) was the candidate gene of the Csleth mutant. The transition mutation of aspartate occurred in Csa3G104930 co-segregated with the phenotyping data. CsKDO was highly expressed in male flowers in wild type cucumbers. Subcellular localization results showed that CsKDO was located in the nucleus. Overall, these results suggest CsKDO regulates lethality during seed germination in cucumber.

8.
J Affect Disord ; 286: 248-258, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33752039

RESUMEN

BACKGROUND: Post-traumatic stress disorder (PTSD) is a debilitating mental disease with high morbidity and major social and economic relevance. No efficient treatment for PTSD has thus far been identified. Clinical research has shown that ketamine can rapidly alleviate symptoms in patients with chronic PTSD; however, its pharmacological mechanism has yet to be determined. METHODS: This study aimed to identify a model of single prolonged stress (SPS), which induced PTSD-like features in adult mice. Once the model was established, stress-related behavioral changes in the mouse model were evaluated after intraperitoneal injection of ketamine (10 mg/kg). Alterations in certain proteins (HCN1, BDNF, and PSD95) and synaptic ultrastructure in the prefrontal cortex (PFC) and hippocampus (HIP) were measured. RESULTS: The mice under the SPS model exhibited anxiety- and depression-like behaviors and induced spatial cognitive deficits, accompanied by elevated HCN1 protein expression in the PFC and HIP, reduced brain-derived neurotrophic factor (BDNF) and PSD95 proteins, and alterations in synaptic morphology. After ketamine administration, the SPS-treated mice restored their protein levels and synaptic ultrastructure in the PFC, and their PTSD-like behaviors improved. However, learning and memory in the SPS-treated mice did not improve in the water maze test, and no significant changes in protein level and synaptic ultrastructure in the HIP were shown. LIMITATIONS: The electrophysiological mechanism of the HCN1 ion channel after ketamine administration was not explored. CONCLUSION: Ketamine could generally improve SPS-induced mood dysfunction in mice but exerted no effect on the spatial cognitive function, which could be related to the alterations in synaptic morphology and function mediated by HCN1-related BDNF signaling in the PFC and HIP.


Asunto(s)
Ketamina , Trastornos por Estrés Postraumático , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Cognición , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Ketamina/farmacología , Ratones , Canales de Potasio , Trastornos por Estrés Postraumático/tratamiento farmacológico
9.
Theor Appl Genet ; 133(5): 1739-1752, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31728564

RESUMEN

Vegetable crops are major nutrient sources for humanity and have been well-cultivated since thousands of years of domestication. With the rapid development of next-generation sequencing and high-throughput genotyping technologies, the reference genome of more than 20 vegetables have been well-assembled and published. Resequencing approaches on large-scale germplasm resources have clarified the domestication and improvement of vegetable crops by human selection; its application on genetic mapping and quantitative trait locus analysis has led to the discovery of key genes and molecular markers linked to important traits in vegetables. Moreover, genome-based breeding has been utilized in many vegetable crops, including Solanaceae, Cucurbitaceae, Cruciferae, and other families, thereby promoting molecular breeding at a single-nucleotide level. Thus, genome-wide SNP markers have been widely used, and high-throughput genotyping techniques have become one of the most essential methods in vegetable breeding. With the popularization of gene editing technology research on vegetable crops, breeding efficiency can be rapidly increased, especially by combining the genomic and variomic information of vegetable crops. This review outlines the present genome-based breeding approaches used for major vegetable crops to provide insights into next-generation molecular breeding for the increasing global population.


Asunto(s)
Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/genética , Genoma de Planta , Genómica/métodos , Fitomejoramiento/normas , Sitios de Carácter Cuantitativo , Verduras/genética , Fenotipo , Verduras/crecimiento & desarrollo
10.
J Exp Bot ; 70(20): 5715-5730, 2019 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-31407012

RESUMEN

Lateral organ development is essential for cucumber production. The protein kinase PINOID (PID) participates in distinct aspects of plant development by mediating polar auxin transport in different species. Here, we obtained a round leaf (rl) mutant that displayed extensive phenotypes including round leaf shape, inhibited tendril outgrowth, abnormal floral organs, and disrupted ovule genesis. MutMap+ analysis revealed that rl encodes a cucumber ortholog of PID (CsPID). A non-synonymous single nucleotide polymorphism in the second exon of CsPID resulted in an amino acid substitution from arginine to lysine in the rl mutant. Allelic testing using the mutant allele C356 with similar phenotypes verified that CsPID was the causal gene. CsPID was preferentially expressed in young leaf and flower buds and down-regulated in the rl mutant. Subcellular localization showed that the mutant form, Cspid, showed a dotted pattern of localization, in contrast to the continuous pattern of CsPID in the periphery of the cell and nucleus. Complementation analysis in Arabidopsis showed that CsPID, but not Cspid, can partially rescue the pid-14 mutant phenotype. Moreover, indole-3-acetic acid content was greatly reduced in the rl mutant. Transcriptome profiling revealed that transcription factors, ovule morphogenesis, and auxin transport-related genes were significantly down-regulated in the rl mutant. Biochemical analysis showed that CsPID physically interacted with a key polarity protein, CsREV (REVOLUTA). We developed a model in which CsPID regulates lateral organ morphogenesis and ovule development by stimulating genes related to auxin transport and ovule development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Cucumis sativus/crecimiento & desarrollo , Cucumis sativus/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cucumis sativus/genética , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/genética , Proteínas Serina-Treonina Quinasas/genética
11.
Theor Appl Genet ; 131(8): 1659-1669, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29740668

RESUMEN

KEY MESSAGE: A yellow green peel mutant (ygp) in cucumber was caused by a mutation in Csa2G352940 encoding MYB36 transcription factor. Peel color is one of the important agronomic traits of cucumber (Cucumis sativus L.). However, studies on the molecular regulation mechanism of peel color in cucumber are few. In this study, a cucumber yellow green peel mutant (ygp) of cucumber mutagenized with ethylmethylsulfone by using a wild type cucumber with dark green peel was identified. Pigment measurements indicated that the chlorophyll content of the ygp mutant was less than that of the wild type. Genetic analysis revealed that the phenotype of the ygp mutant was monogenic recessive inheritance. MutMap and genotyping results demonstrated that Csa2G352940 (CsMYB36), encoding the transcription factor MYB36, was the causal gene of the ygp mutant in cucumber. CsMYB36 was downregulated in the fruit of the ygp mutant. Transcriptome profile analysis of the fruit peel of the ygp mutant identified 92 candidate genes including genes that encode Casparian strip (CsCASP1) and pigment synthesis protein (CsMYC2) involved in peel color development in cucumber. CsMYB36 may regulate yellow green coloration in cucumber by interacting with these genes. Overall, these results showed that CsMYB36 can regulate the yellow green peel coloration in cucumber.


Asunto(s)
Cucumis sativus/genética , Genes de Plantas , Pigmentación/genética , Factores de Transcripción/genética , Secuencia de Aminoácidos , Clorofila/análisis , Cloroplastos/ultraestructura , Mapeo Cromosómico , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes Recesivos , Genotipo , Microscopía Electrónica de Transmisión , Fenotipo , Proteínas de Plantas/genética , Polimorfismo de Nucleótido Simple
12.
Breed Sci ; 68(5): 571-581, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30697118

RESUMEN

Variegation is a frequently observed genetic phenomenon in landscaping. In this study, an ethyl methanesulfonate induced variegated leaf (Csvl) mutant in cucumber (Cucumis sativus L.) was identified. The Csvl mutant displayed green-yellow-white variegation phenotype throughout the whole growth cycle, while the leaf of wild type plants was normal green. The photosynthetic pigment contents and photosynthetic parameters of Csvl was significantly lower than wild type. The cytology observation results showed that the mesophyll cells of Csvl mutant contained defective chloroplasts. Genetic analysis indicated that variegated leaf phenotype was monogenic recessive inheritance. MutMap and genotyping results revealed that Csa6G405290 (Cscs), encoding chorismate synthase, was the candidate gene for variegated leaf mutant in cucumber. The expression level of Cscs was similar between wild type and variegated leaf mutant leaves. Transcriptome profile analysis of leaves of Csvl mutant identified 183 candidate genes involved in variegated leaf development in cucumber, including genes that encode heat shock protein, zinc finger protein. Cscs may regulate variegated leaf in cucumber by interacting with these genes. In a word, these results revealed that Cscs might regulate the variegated leaf phenotype in cucumber.

13.
J Plant Physiol ; 167(11): 905-13, 2010 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-20303197

RESUMEN

Cucumber has been widely studied as a model for floral sex determination. In this investigation, we performed genome-wide transcriptional profiling of apical tissue of a gynoecious mutant (Csg-G) and the monoecious wild-type (Csg-M) of cucumber in an attempt to isolate genes involved in sex determination, using the Solexa technology. The profiling analysis revealed numerous changes in gene expression attributable to the mutation, which resulted in the down-regulation of 600 genes and the up-regulation of 143 genes. The Solexa data were confirmed by reverse transcription polymerase chain reaction (RT-PCR) and real-time quantitative RT-PCR (qRT-PCR). Gene ontology (GO) analysis revealed that the differentially expressed genes were mainly involved in biogenesis, transport and organization of cellular component, macromolecular and cellular biosynthesis, localization, establishment of localization, translation and other processes. Furthermore, the expression of some of these genes depended upon the tissue and the developmental stage of the flowers of gynoecious mutant. The results of this study suggest two important concepts, which govern sex determination in cucumber. First, the differential expression of genes involved in plant hormone signaling pathways, such as ACS, Asr1, CsIAA2, CS-AUX1 and TLP, indicate that phytohormones and their crosstalk might play a critical role in the sex determination. Second, the regulation of some transcription factors, including EREBP-9, may also be involved in this developmental process.


Asunto(s)
Cucumis sativus/genética , Cucumis sativus/metabolismo , Flores/genética , Flores/fisiología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Procesos de Determinación del Sexo , Proteínas de Plantas/genética , Proteínas de Plantas/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA