Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
J Colloid Interface Sci ; 679(Pt A): 456-464, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39368165

RESUMEN

Photocatalytic hydrogen peroxide (H2O2) generation on the catalyst surface from oxygen is an electron-demanding process, making the construction of an electron-rich surface highly advantageous. In this study, a localized electric field was observed on the surface of polymeric carbon nitride (g-C3N4) when alkali metal cations were adsorbed onto it. These fields effectively inhibited surface carrier recombination and extended their lifespan, thereby enhancing H2O2 production. As a result, g-C3N4 achieved a superior H2O2 yield of 2.25 mM after 1 h in a 0.25 M K+ solution, which was 2.06 times greater than that (1.09 mM) achieved in a pure solvent. Notably, the increase in photocatalytic efficiency showed a remarkable dependence on ion species. At low concentrations, H2O2 generation efficiency was in the order of Li+ < Na+ < K+ < Rb+ < Cs+. However, after optimizing the ion concentration, the highest H2O2 production was achieved in a solution containing K+ instead of Cs+. Molecular dynamics simulations and temperature-dependent photocatalysis experiments revealed that the synergistic interaction between adsorption energy and adsorption distance was crucial in governing the extent to which alkali metal cation adsorption enhanced g-C3N4 photocatalytic H2O2 production. This study provides theoretical insights for the design of materials for electron-demanding photocatalysis and aids in understanding variations in photocatalytic behavior in natural waters.

2.
Biosens Bioelectron ; 267: 116748, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39276441

RESUMEN

Extracellular vesicles (EVs) are considered as promising candidates for predicting patients who respond to immunotherapy. Nevertheless, simultaneous detection of multiple EVs markers still presents significant technical challenges. In this work, we developed a high-throughput microdroplet-enhanced chip (MEC) platform, which utilizes thousands of individual microchambers (∼pL) as reactors, accelerating the detection efficiency of the CRISPR/Cas systems and increasing the sensitivity by up to 100-fold (aM level). Ten biomarkers (including 5 RNAs and 5 proteins) from patients' EVs are successfully detected on one chip, and the comprehensive markers show increased accuracy (AUC 0.911) than the individual marker for the efficacy prediction of immunotherapy. This platform provides a high-throughput yet sensitive strategy for screening immunotherapy markers in clinical.

3.
Redox Biol ; 76: 103304, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39153252

RESUMEN

Cyclin-dependent kinase 4 and 6 inhibitors (CDK4/6 inhibitors) can significantly extend tumor response in patients with metastatic luminal A breast cancer, yet intrinsic and acquired resistance remains a prevalent issue. Understanding the molecular features of CDK4/6 inhibitor sensitivity and the potential efficacy of their combination with novel targeted cell death inducers may lead to improved patient outcomes. Herein, we demonstrate that ferroptosis, a form of regulated cell death driven by iron-dependent phospholipid peroxidation, partly underpins the efficacy of CDK4/6 inhibitors. Mechanistically, CDK4/6 inhibitors downregulate the cystine transporter SLC7A11 by inhibiting SP1 binding to the SLC7A11 promoter region. Furthermore, SLC7A11 is identified as critical for the intrinsic sensitivity of luminal A breast cancer to CDK4/6 inhibitors. Both genetic and pharmacological inhibition of SP1 or SLC7A11 enhances cell sensitivity to CDK4/6 inhibitors and synergistically inhibits luminal A breast cancer growth when combined with CDK4/6 inhibitors in vitro and in vivo. Our data highlight the potential of targeting SLC7A11 in combination with CDK4/6 inhibitors, supporting further investigation of combination therapy in luminal A breast cancer.


Asunto(s)
Sistema de Transporte de Aminoácidos y+ , Neoplasias de la Mama , Quinasa 4 Dependiente de la Ciclina , Quinasa 6 Dependiente de la Ciclina , Ferroptosis , Inhibidores de Proteínas Quinasas , Humanos , Ferroptosis/efectos de los fármacos , Sistema de Transporte de Aminoácidos y+/metabolismo , Sistema de Transporte de Aminoácidos y+/genética , Sistema de Transporte de Aminoácidos y+/antagonistas & inhibidores , Femenino , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 4 Dependiente de la Ciclina/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 6 Dependiente de la Ciclina/metabolismo , Animales , Ratones , Línea Celular Tumoral , Inhibidores de Proteínas Quinasas/farmacología , Factor de Transcripción Sp1/metabolismo , Factor de Transcripción Sp1/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Piperazinas/farmacología , Proliferación Celular/efectos de los fármacos
4.
Anal Methods ; 16(23): 3646-3653, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38738568

RESUMEN

Formaldehyde (FA) is endogenously generated via fundamental biological processes in living systems. Aberrant FA homeostasis in subcellular microenvironments is implicated in numerous pathological conditions. Fluorescent probes for detecting FA in specific organelles are thus of great research interest. Herein, we present a modular strategy to construct diverse organelle-targeting FA probes by incorporating selective organelle-targeting moieties into the scaffold of a 1,8-naphthalimide-derived FA fluorescent probe. These probes react with FA through the 2-aza-Cope arrangement and exhibit highly selective fluorescence increases for detecting FA in aqueous solutions. Moreover, these organelle-targeting probes, i.e., FFP551-Nuc, FFP551-ER, FFP551-Mito, and FFP551-Lyso, allow selective localization and imaging of FA in the nucleus, endoplasmic reticulum, mitochondria, and lysosomes of live mammalian cells, respectively. Furthermore, FFP551-Nuc has been successfully employed to monitor changes of endogenous FA levels in the nucleus of live mammalian cells. Overall, these probes should represent new imaging tools for studying the biology and pathology associated with FA in different intracellular compartments.


Asunto(s)
Colorantes Fluorescentes , Formaldehído , Orgánulos , Colorantes Fluorescentes/química , Formaldehído/química , Humanos , Orgánulos/química , Orgánulos/metabolismo , Imagen Óptica/métodos , Células HeLa , Microscopía Fluorescente/métodos , Animales
5.
ACS Appl Mater Interfaces ; 16(23): 29716-29727, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38814480

RESUMEN

The emergence of XBB.1.16 has gained rapid global prominence. Previous studies have elucidated that the infection of SARS-CoV-2 induces alterations in the mitochondrial integrity of host cells, subsequently influencing the cellular response to infection. In this study, we compared the differences in infectivity and pathogenicity between XBB.1.16 and the parental Omicron sublineages BA.1 and BA.2 and assessed their impact on host mitochondria. Our findings suggest that, in comparison with BA.1 and BA.2, XBB.1.16 exhibits more efficient spike protein cleavage, more efficient mediating syncytia formation, mild mitochondriopathy, and less pathogenicity. Altogether, our investigations suggest that, based on the mutation of key sites, XBB.1.16 exhibited enhanced infectivity but lower pathogenicity. This will help us to further investigate the biological functions of key mutation sites.


Asunto(s)
COVID-19 , Mitocondrias , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Humanos , COVID-19/virología , Mitocondrias/metabolismo , Animales , Mutación , Chlorocebus aethiops , Células Vero , Ratones , Células HEK293
6.
Cancer Lett ; 590: 216869, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38593918

RESUMEN

Lysine acetyltransferase 7 (KAT7), a histone acetyltransferase, has recently been identified as an oncoprotein and has been implicated in the development of various malignancies. However, its specific role in head and neck squamous carcinoma (HNSCC) has not been fully elucidated. Our study revealed that high expression of KAT7 in HNSCC patients is associated with poor survival prognosis and silencing KAT7 inhibits the Warburg effect, leading to reduced proliferation, invasion, and metastatic potential of HNSCC. Further investigation uncovered a link between the high expression of KAT7 in HNSCC and tumor-specific glycolytic metabolism. Notably, KAT7 positively regulates Lactate dehydrogenase A (LDHA), a key enzyme in metabolism, to promote lactate production and create a conducive environment for tumor proliferation and metastasis. Additionally, KAT7 enhances LDHA activity and upregulates LDHA protein expression by acetylating the lysine 118 site of LDHA. Treatment with WM3835, a KAT7 inhibitor, effectively suppressed the growth of subcutaneously implanted HNSCC cells in mice. In conclusion, our findings suggest that KAT7 exerts pro-cancer effects in HNSCC by acetylating LDHA and may serve as a potential therapeutic target. Inhibiting KAT7 or LDHA expression holds promise as a therapeutic strategy to suppress the growth and progression of HNSCC.


Asunto(s)
Proliferación Celular , Neoplasias de Cabeza y Cuello , Histona Acetiltransferasas , Carcinoma de Células Escamosas de Cabeza y Cuello , Humanos , Animales , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Acetilación , Línea Celular Tumoral , Histona Acetiltransferasas/metabolismo , Histona Acetiltransferasas/genética , Ratones , L-Lactato Deshidrogenasa/metabolismo , L-Lactato Deshidrogenasa/genética , Lisina Acetiltransferasas/metabolismo , Lisina Acetiltransferasas/genética , Regulación Neoplásica de la Expresión Génica , Ratones Desnudos , Efecto Warburg en Oncología , Masculino , Femenino , Movimiento Celular , Ensayos Antitumor por Modelo de Xenoinjerto , Invasividad Neoplásica , Isoenzimas/metabolismo , Isoenzimas/genética
7.
Hellenic J Cardiol ; 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38582140

RESUMEN

BACKGROUND: Sacubitril/valsartan (S/V) has been shown to be an effective antihypertensive drug combination. However, its therapeutic effects on blood pressure (BP), hemodynamics, and left ventricular (LV) remodeling in resistant hypertension (RHTN) remain unclear. METHODS: Eighty-six patients completed this self-control study, during which olmesartan was administered within the first 8 weeks (phase 1), followed by S/V within the second 8 weeks (phase 2), with nifedipine and hydrochlorothiazide taken as background medications. Office BP, echocardiography, and hemodynamics assessment using impedance cardiography were performed at baseline and at the eighth and sixteenth weeks. RESULTS: The reduction in office BP was larger in phase 2 than in phase 1 (19.59/11.66 mmHg vs. 2.88/1.15 mmHg). Furthermore, the treatment in phase 2 provided greater reductions in systemic vascular resistance index (SVRI) and thoracic blood saturation ratio (TBR), with differences between the two phases of -226.59 (-1212.80 to 509.55) dyn·s/cm5/m2 and -0.02 (-0.04 to 0.02). Switching from olmesartan to S/V also significantly reduced E/E', LV mass index, LV end-diastolic volume index, and LV end-systolic volume index (all P < 0.05). Decreases in arterial stiffness, SVRI, and TBR were correlated with changes in indicators of LV remodeling (all P < 0.05). This correlation persisted even after adjusting for confounders including changes in BP. CONCLUSIONS: Switching from olmesartan to S/V effectively lowered BP and reversed ventricular remodeling in RHTN. In addition, hemodynamic improvement was also observed. Changes in hemodynamics played an important role in reversing LV remodeling of S/V, and were independent of its antihypertensive effect.

8.
Small ; 20(28): e2311129, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38319033

RESUMEN

Constructing concentration differences between anions and cations at the ends of an ionic conductor is an effective strategy in electricity generation for powering wearable devices. Temperature gradient or salinity gradient is the driving force behind such devices. But their corresponding power generation devices are greatly limited in actual application due to their complex structure and harsh application conditions. In this study, a novel ionic concentration gradient electric generator based on the evaporation difference of the electrolyte is proposed. The device can be constructed without the need for semipermeable membranes, and operation does not need to build a temperature difference. As a demonstration, a PVA-Na ionic hydrogel is prepared as an electrolyte for the device and achieved a thermovoltage of more than 200 mV and an energy density of 77.94 J m-2 at 323 K. Besides, the device exhibits the capability to sustain a continuous voltage output for a duration exceeding 1500 min, as well as enabling charging and discharging cycles for 100 iterations. For practical applications, a module comprising 16 sub-cells is constructed and successfully utilized to directly power a light-emitting diode. Wearable devices and their corresponding cell modules are also developed to recycle body heat.

9.
Wound Repair Regen ; 32(2): 118-122, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38217307

RESUMEN

Chronic wounds are a common and costly health issue affecting millions of individuals in the United States, particularly those with underlying conditions such as diabetes, venous insufficiency, and peripheral artery disease. When standard treatments fail, advanced wound care therapies, such as skin substitutes, are often applied. However, the clinical effectiveness, indications, and comparative benefits of these therapies have not been well established. In this study, we report on the usage of both acellular and cellular, single and bilayer, natural and synthetic, dermal, and epidermal skin substitutes in a VA hospital system. We performed a retrospective chart review to understand the ordering and usage patterns of advanced wound therapies for patients with chronic wounds at the VA Northern California Health Care System. We examined types of products being recommended, categories of users recommending the products, indications for orders, and rate of repeated orders. Neuropathic, venous, or pressure ulcers were the main indications for using advanced wound matrices. Only 15.6% of patients for whom the matrices were ordered had supporting laboratory tests. Exactly 34.3% of the ordered matrices were not applied. And the use of wound matrices resulted in increased costs per patient visit of $1018-$3450. Our study sheds light on the usage patterns of these therapies in a VA healthcare facility and highlights the need for more robust evidence-based studies to determine the true benefits, efficacy, and cost-effectiveness of these innovative treatment options.


Asunto(s)
Piel Artificial , Cicatrización de Heridas , Humanos , Estados Unidos , Estudios Retrospectivos , United States Department of Veterans Affairs
10.
J Immunother Cancer ; 11(12)2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-38040417

RESUMEN

BACKGROUND: Limited response to programmed death ligand-1 (PD-L1)/programmed death 1 (PD-1) immunotherapy is a major hindrance of checkpoint immunotherapy in non-small cell lung cancer (NSCLC). The abundance of PD-L1 on the tumor cell surface is crucial for the responsiveness of PD-1/PD-L1 immunotherapy. However, the negative control of PD-L1 expression and the physiological significance of the PD-L1 inhibition in NSCLC immunotherapy remain obscure. METHODS: Bioinformatics analysis was performed to profile and investigate the long non-coding RNAs that negatively correlated with PD-L1 expression and positively correlated with CD8+T cell infiltration in NSCLC. Immunofluorescence, in vitro PD-1 binding assay, T cell-induced apoptosis assays and in vivo syngeneic mouse models were used to investigate the functional roles of LINC02418 and mmu-4930573I07Rik in regulating anti-PD-L1 therapeutic efficacy in NSCLC. The molecular mechanism of LINC02418-enhanced PD-L1 downregulation was explored by immunoprecipitation, RNA immunoprecipitation (RIP), and ubiquitination assays. RIP, luciferase reporter, and messenger RNA degradation assays were used to investigate the m6A modification of LINC02418 or mmu-4930573I07Rik expression. Bioinformatics analysis and immunohistochemistry (IHC) verification were performed to determine the significance of LINC02418, PD-L1 expression and CD8+T cell infiltration. RESULTS: LINC02418 is a negative regulator of PD-L1 expression that positively correlated with CD8+T cell infiltration, predicting favorable clinical outcomes for patients with NSCLC. LINC02418 downregulates PD-L1 expression by enhancing PD-L1 ubiquitination mediated by E3 ligase Trim21. Both hsa-LINC02418 and mmu-4930573I07Rik (its homologous RNA in mice) regulate PD-L1 therapeutic efficacy in NSCLC via Trim21, inducing T cell-induced apoptosis in vitro and in vivo. Furthermore, METTL3 inhibition via N6-methyladenosine (m6A) modification mediated by YTHDF2 reader upregulates hsa-LINC02418 and mmu-4930573I07Rik. In patients with NSCLC, LINC02418 expression is inversely correlated with PD-L1 expression and positively correlated with CD8+T infiltration. CONCLUSION: LINC02418 functions as a negative regulator of PD-L1 expression in NSCLC cells by promoting the degradation of PD-L1 through the ubiquitin-proteasome pathway. The expression of LINC02418 is regulated by METTL3/YTHDF2-mediated m6A modification. This study illuminates the underlying mechanisms of PD-L1 negative regulation and presents a promising target for improving the effectiveness of anti-PD-L1 therapy in NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Animales , Ratones , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , Antígeno B7-H1/metabolismo , Receptor de Muerte Celular Programada 1 , Inmunoterapia , ARN/metabolismo , ARN/uso terapéutico , Ubiquitinación , Metiltransferasas/genética , Metiltransferasas/metabolismo , Metiltransferasas/uso terapéutico
11.
Materials (Basel) ; 16(17)2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37687677

RESUMEN

The Si atom diffusion behavior in Ni-based superalloys was evaluated based on first-principles calculations. Also, the site occupation of Si atoms as the melting point depressant elements in Cr, Mo, and W atom doped γ-Ni and γ'-Ni3Fe supercells was discussed and Si atom diffusion behaviors between both adjacent octahedral interstices were analyzed. Calculation results indicated that formation enthalpy (∆Hf) was decreased, stability was improved by doping alloying elements Cr, Mo, and W in γ-Ni and γ'-Ni3Fe supercells, Si atoms were more inclined to occupy octahedral interstices and the diffusion energy barrier was increased by increasing the radius of the doped alloy element. Especially, two diffusion paths were available for Si atoms in the γ'-Ni3Fe and Si diffusion energy barrier around the shared Fe atoms between adjacent octahedral interstices and was significantly lower than that around the shared Ni atoms. The increase of interaction strength between the doped M atom/octahedron constituent atom and Si atom increased Si atom diffusion and decreased the diffusion energy barrier. The Si atom diffusion behavior provides a theoretical basis for the phase structure evolution in wide-gap brazed joints.

12.
Fetal Diagn Ther ; 50(6): 491-500, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37393899

RESUMEN

Spina bifida is the most common congenital anomaly of the central nervous system and the first non-fatal fetal lesions to be addressed by fetal intervention. While research in spina bifida has been performed in rodent, nonhuman primate, and canine models, sheep have been a model organism for the disease. This review summarizes the history of development of the ovine model of spina bifida, previous applications, and translation into clinical studies. Initially used by Meuli et al. [Nat Med. 1995;1(4):342-7], fetal myelomeningocele defect creation and in utero repair demonstrated motor function preservation. The addition of myelotomy in this model can reproduce hindbrain herniation malformations, which is the leading cause of mortality and morbidity in humans. Since inception, the ovine models have been validated numerous times as the ideal large animal model for fetal repair, with both locomotive scoring and spina bifida defect scoring adding to the rigor of this model. The ovine model has been used to study different methods of myelomeningocele defect repair, the application of various tissue engineering techniques for neuroprotection and bowel and bladder function. The results of these large animal studies have been translated into human clinical trials including Management of Meningocele Study (MOMS) trial that established current standard of care for prenatal repair of spina bifida defects, and the ongoing trials including the Cellular Therapy for In Utero Repair of Myelomeningocele (CuRe) trial using a stem cell patch for repair. The advancement of these life savings and life-altering therapies began in sheep models, and this notable model continues to be used to further the field including current work with stem cell therapy.


Asunto(s)
Meningocele , Meningomielocele , Disrafia Espinal , Embarazo , Femenino , Animales , Ovinos , Perros , Humanos , Meningomielocele/cirugía , Disrafia Espinal/cirugía , Feto/patología , Atención Prenatal
13.
Int J Mol Sci ; 24(10)2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37240315

RESUMEN

Non-alcoholic fatty liver disease (NAFLD), characterized by excessive lipid accumulation in hepatocytes, is an increasing global healthcare burden. Sirtuin 2 (SIRT2) functions as a preventive molecule for NAFLD with incompletely clarified regulatory mechanisms. Metabolic changes and gut microbiota imbalance are critical to the pathogenesis of NAFLD. However, their association with SIRT2 in NAFLD progression is still unknown. Here, we report that SIRT2 knockout (KO) mice are susceptible to HFCS (high-fat/high-cholesterol/high-sucrose)-induced obesity and hepatic steatosis accompanied with an aggravated metabolic profile, which indicates SIRT2 deficiency promotes NAFLD-NASH (nonalcoholic steatohepatitis) progression. Under palmitic acid (PA), cholesterol (CHO), and high glucose (Glu) conditions, SIRT2 deficiency promotes lipid deposition and inflammation in cultured cells. Mechanically, SIRT2 deficiency induces serum metabolites alteration including upregulation of L-proline and downregulation of phosphatidylcholines (PC), lysophosphatidylcholine (LPC), and epinephrine. Furthermore, SIRT2 deficiency promotes gut microbiota dysbiosis. The microbiota composition clustered distinctly in SIRT2 KO mice with decreased Bacteroides and Eubacterium, and increased Acetatifactor. In clinical patients, SIRT2 is downregulated in the NALFD patients compared with healthy controls, and is associated with exacerbated progression of normal liver status to NAFLD to NASH in clinical patients. In conclusion, SIRT2 deficiency accelerates HFCS-induced NAFLD-NASH progression by inducing alteration of gut microbiota and changes of metabolites.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Hígado/metabolismo , Sirtuina 2/genética , Sirtuina 2/metabolismo , Dieta , Lípidos , Dieta Alta en Grasa/efectos adversos , Ratones Endogámicos C57BL
14.
Front Cardiovasc Med ; 9: 997109, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36523357

RESUMEN

Purpose: Enhanced external counterpulsation (EECP) is a new non-drug treatment for coronary artery disease (CAD). However, the long-term effect of EECP on endothelial dysfunction and exercise tolerance, and the relationship between the changes in the endothelial dysfunction and exercise tolerance in the patients with coronary heart disease are still unclear. Methods: A total of 240 patients with CAD were randomly divided into EECP group (n = 120) and control group (n = 120). All patients received routine treatment of CAD as the basic therapy. Patients in the EECP group received 35 1-h daily sessions of EECP during 7 consecutive weeks while the control group received the same treatment course, but the cuff inflation pressure was 0-10 mmHg. Peak systolic velocity (PSV), end diastolic velocity (EDV), resistance index (RI), and inner diameter (ID) of the right carotid artery were examined using a Color Doppler Ultrasound and used to calculate the fluid shear stress (FSS). Serum levels of human vascular endothelial cell growth factor (VEGF), vascular endothelial cell growth factor receptor 2 (VEGFR2), and human angiotensin 2 (Ang2) were determined by enzyme-linked immunosorbent assay (ELISA). Exercise load time, maximal oxygen uptake (VO2max ), metabolic equivalent (METs), anaerobic threshold (AT), peak oxygen pulse (VO2max/HR) were assessed using cardiopulmonary exercise tests. Results: After 1 year follow-up, the EDV, PSV, ID, and FSS were significantly increased in the EECP group (P < 0.05 and 0.01, respectively), whereas there were no significant changes in these parameters in the control group. The serum levels of VEGF and VEGFR2 were elevated in the EECP and control groups (all P < 0.05). However, the changes in VEGF and VEGFR2 were significantly higher in the EECP group than in the control group (P < 0.01). The serum level of Ang2 was decreased in the EECP group (P < 0.05) and no obvious changes in the control group. As for exercise tolerance of patients, there were significant increases in the exercise load time, VO2max, VO2max/HR, AT and METs in the EECP group (all P < 0.05) and VO2max and METs in the control group (all P < 0.05). Correlation analyses showed a significant and positive correlations of VEGF and VEGFR2 levels with the changes in FSS (all P < 0.001). The correlations were still remained even after adjustment for confounders (all Padjustment < 0.001). Linear regression displays the age, the medication of ACEI (angiotensin-converting enzyme inhibitors) or ARB (angiotensin receptor blockers), the diabetes and the changes in VEGF and VEGFR2 were positively and independently associated with the changes in METs after adjustment for confounders (all Padjustment < 0.05). Conclusion: The data of our study suggested that EECP is a useful therapeutic measurement for amelioration of endothelial dysfunction and long-term elevation of exercise tolerance for patients with coronary heart disease. Clinical trial registration: [http://www.chictr.org.cn/], identifier [ChiCTR1800020102].

15.
Int J Biol Sci ; 18(11): 4372-4387, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35864964

RESUMEN

Over the past decades, the incidence of thyroid cancer (TC) rapidly increased all over the world, with the papillary thyroid cancer (PTC) accounting for the vast majority of TC cases. It is crucial to investigate novel diagnostic and therapeutic targets for PTC and explore more detailed molecular mechanisms in the carcinogenesis and progression of PTC. Based on the TCGA and GEO databases, FAM111B is downregulated in PTC tissues and predicts better prognosis in PTC patients. FAM111B suppresses the growth, migration, invasion and glycolysis of PTC both in vitro and in vivo. Furthermore, estrogen inhibits FAM111B expression by DNMT3B methylation via enhancing the recruitment of DNMT3B to FAM111B promoter. DNMT3B-mediated FAM111B methylation accelerates the growth, migration, invasion and glycolysis of PTC cells. In clinical TC patient specimens, the expression of FAM111B is inversely correlated with the expressions of DNMT3B and the glycolytic gene PGK1. Besides, the expression of FAM111B is inversely correlated while DNMT3B is positively correlated with glucose uptake in PTC patients. Our work established E2/DNMT3B/FAM111B as a crucial axis in regulating the growth and progression of PTC. Suppression of DNMT3B or promotion of FAM111B will be potential promising strategies in the estrogen induced PTC.


Asunto(s)
Proteínas de Ciclo Celular , ADN (Citosina-5-)-Metiltransferasas , Neoplasias de la Tiroides , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , ADN (Citosina-5-)-Metiltransferasas/genética , Estrógenos , Regulación Neoplásica de la Expresión Génica , Glucólisis , Humanos , Metilación , Cáncer Papilar Tiroideo/genética , Cáncer Papilar Tiroideo/patología , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/patología , ADN Metiltransferasa 3B
16.
Int Heart J ; 63(4): 755-762, 2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35831147

RESUMEN

Ursolic acid (UA) has been reported to possess several biological benefits, such as anti-cancer, anti-inflammation, antibacterial, and neuroprotective functions. This study detects the function and molecular mechanism of UA in H9c2 cells under hypoxia and reoxygenation (H/R) conditions.Under H/R stimulation, the effects of UA on H9c2 cells were examined using ELISA and western blot assays. The Comparative Toxicogenomics Database was employed to analyze the target molecule of UA. Small interfering RNA was used to knock down CXCL2 expression, further exploring the function of CXCL2 in H/R-induced H9c2 cells. The genes related to the nuclear factor-kappa B (NF-κB) pathway were assessed using western blot analysis.Significant effects of UA on H/R-induced H9c2 cell damage were observed, accompanied by reduced inflammation and oxidative stress injury. Additionally, the increased level of CXCL2 in H/R-induced H9c2 cells was reduced after UA stimulation. Moreover, CXCL2 knockdown strengthened the beneficial effect of UA on H/R-induced H9c2 cells. HY-18739, an activator of the NF-κB pathway, can increase CXCL2 expression. Moreover, the increased levels of p-P65 NF-κB and p-IκBα in H/R-induced H9c2 cells were remarkably attenuated by UA treatment.In summary, the results indicated that UA may alleviate the damage of H9c2 cells by targeting the CXCL2/NF-κB pathway under H/R conditions.


Asunto(s)
FN-kappa B , Triterpenos , Antiinflamatorios/farmacología , Apoptosis , Quimiocina CXCL2/metabolismo , Quimiocina CXCL2/farmacología , Humanos , Hipoxia/metabolismo , Miocitos Cardíacos/metabolismo , FN-kappa B/metabolismo , Transducción de Señal , Triterpenos/metabolismo , Triterpenos/farmacología , Ácido Ursólico
17.
J Clin Lab Anal ; 36(8): e24586, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35791925

RESUMEN

BACKGROUND: This study aimed to explore the relationship between the Sirtuin 3 (SIRT3) gene and endothelial cell dysfunction, contributing to the progression of coronary atherosclerosis driven by hyperglycemia. METHODS: We measured serum SIRT3 levels using enzyme-linked immunosorbent assay in 95 patients with type 2 diabetes mellitus (T2DM) who underwent diagnostic coronary angiography. The patients were divided into two groups according to the presence (n = 45) or absence (n = 50) of coronary artery disease (CAD). Human aortic endothelial cells (HAECs) grown in vitro in a medium with various concentrations of glucose (5.5, 11, 16.5, 22, 27.5, 33, and 38.5 mM) for 24 h were assessed for protein expression of SIRT3, peroxisome proliferator-activated receptor alpha (PPAR-α), endothelial nitric oxide (NO) synthase (eNOS), and inducible NO synthase (iNOS) using Western blot analysis. HAECs were subjected to SIRT3 overexpression or inhibition through SIRT3 adenovirus and siRNA transfection. RESULTS: Serum SIRT3 levels were significantly lower in T2DM patients with CAD than in those without CAD (p = 0.048). The in vitro results showed that HG significantly increased SIRT3, PPAR-α, and eNOS protein expression in a concentration-dependent manner. Moreover, iNOS expression was decreased in HAECs in response to HG. Reduced PPAR-α and eNOS levels and increased iNOS levels were observed in SIRT3 silenced HAECs cells. In contrast, SIRT3 overexpression significantly improved PPAR-α and eNOS expression and suppressed iNOS expression. CONCLUSION: SIRT3 was associated with the progression of atherosclerosis in T2DM patients through upregulation of PPAR-α and eNOS and downregulation of iNOS, which are involved in endothelial dysfunction under hyperglycemic conditions.


Asunto(s)
Enfermedad de la Arteria Coronaria , Diabetes Mellitus Tipo 2 , Hiperglucemia , Sirtuina 3 , Enfermedad de la Arteria Coronaria/complicaciones , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Células Endoteliales , Humanos , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Sirtuina 3/genética , Sirtuina 3/metabolismo
18.
J Dev Biol ; 10(2)2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-35735913

RESUMEN

Spina bifida is the most common congenital defect of the central nervous system which can portend lifelong disability to those afflicted. While the complete underpinnings of this disease are yet to be fully understood, there have been great advances in the genetic and molecular underpinnings of this disease. Moreover, the treatment for spina bifida has made great advancements, from surgical closure of the defect after birth to the now state-of-the-art intrauterine repair. This review will touch upon the genetics, embryology, and pathophysiology and conclude with a discussion on current therapy, as well as the first FDA-approved clinical trial utilizing stem cells as treatment for spina bifida.

19.
Mol Med ; 28(1): 43, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35428170

RESUMEN

BACKGROUND: Pancreatic cancer (PC) is a malignancy with a poor prognosis and high mortality. Surgical resection is the only "curative" treatment. However, only a minority of patients with PC can obtain surgery. Improving the overall survival (OS) rate of patients with PC is still a major challenge. Molecular biomarkers are a significant approach for diagnostic and predictive use in PCs. Several prediction models have been developed for patients newly diagnosed with PC that is operable or patients with advanced and metastatic PC; however, these models require further validation. Therefore, precise biomarkers are urgently required to increase the efficiency of predicting a disease-free survival (DFS), OS, and sensitivity to immunotherapy in PC patients and to improve the prognosis of PC. METHODS: In the present study, we first evaluated the highly and selectively expressed targets in PC, using the GeoMxTM Digital Spatial Profiler (DSP) and then, we analyzed the roles of these targets in PCs using TCGA database. RESULTS: LAMB3, FN1, KRT17, KRT19, and ANXA1 were defined as the top five upregulated targets in PC compared with paracancer. The TCGA database results confirmed the expression pattern of LAMB3, FN1, KRT17, KRT19, and ANXA1 in PCs. Significantly, LAMB3, FN1, KRT19, and ANXA1 but not KRT17 can be considered as biomarkers for survival analysis, univariate and multivariate Cox proportional hazards model, and risk model analysis. Furthermore, in combination, LAMB3, FN1, KRT19, and ANXA1 predict the DFS and, in combination, LAMB3, KRT19, and ANXA1 predict the OS. Immunotherapy is significant for PCs that are inoperable. The immune checkpoint blockade (ICB) analysis indicated that higher expressions of FN1 or ANXA1 are correlated with lower ICB response. In contrast, there are no significant differences in the ICB response between high and low expression of LAMB3 and KRT19. CONCLUSIONS: In conclusion, LAMB3, FN1, KRT19, and ANXA1 are good predictors of PC prognosis. Furthermore, FN1 and ANXA1 can be predictors of immunotherapy in PCs.


Asunto(s)
Neoplasias Pancreáticas , Biomarcadores , Biomarcadores de Tumor , Humanos , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Pronóstico , Análisis de Supervivencia , Neoplasias Pancreáticas
20.
Hum Exp Toxicol ; 41: 9603271221093626, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35438581

RESUMEN

BACKGROUND: Cardiac microvascular endothelial cells (CMECs) are rapidly damaged after myocardial ischemia or hypoxia. In this study, we intend to explore whether ursolic acid (UA) can protect CMECs against hypoxia/reoxygenation (H/R) injury and to detect related molecular mechanism. METHODS: CMECs were subjected to H/R condition in the absence or presence of UA. Cell behaviors were measured by Cell Counting Kit-8, transwell, ELISA and western blot assays. siRNA was applied to reduce ICAM1 expression, then the effect of co-treatment of UA and si-ICAM1 on CMECs has been detected by biological experiments. RESULTS: Under H/R stimulation, the proliferation and migration of CMECs were inhibited, as well as the inflammation and oxidative stress were enhanced. UA treatment obviously reversed these H/R-induced injuries and reduced ICAM1 expression. Moreover, knockdown of ICAM1 could alleviate the H/R-induced injuries and strengthen the protective effect of UA on CMECs under H/R condition. Additionally, the protein levels of TLR4, MyD88 and p-P65 NF-κB were obviously increased after H/R stimulation, whereas the addition of UA could alter the phenomena by reducing TLR4, MyD88, and p-P65 NF-κB expression. CONCLUSIONS: Our results insinuated that UA could alleviate H/R-induced injuries in CMECs by regulating ICAM1 and TLR4/MyD88/NF-κB pathway.


Asunto(s)
FN-kappa B , Receptor Toll-Like 4 , Células Endoteliales/metabolismo , Humanos , Hipoxia , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Factor 88 de Diferenciación Mieloide/farmacología , FN-kappa B/metabolismo , Transducción de Señal , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Triterpenos , Ácido Ursólico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...