Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 41(10): 111771, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36476879

RESUMEN

Neuroligins (NLs), a family of postsynaptic cell-adhesion molecules, have been associated with autism spectrum disorder. We have reported that dysfunction of the medial prefrontal cortex (mPFC) leads to social deficits in an NL3 R451C knockin (KI) mouse model of autism. However, the underlying molecular mechanism remains unclear. Here, we find that N-methyl-D-aspartate receptor (NMDAR) function and parvalbumin-positive (PV+) interneuron number and expression are reduced in the mPFC of the KI mice. Selective knockdown of NMDAR subunit GluN1 in the mPFC PV+ interneuron decreases its intrinsic excitability. Restoring NMDAR function by its partial agonist D-cycloserine rescues the PV+ interneuron dysfunction and social deficits in the KI mice. Interestingly, early D-cycloserine administration at adolescence prevents adult KI mice from social deficits. Together, our results suggest that NMDAR hypofunction and the resultant PV+ interneuron dysfunction in the mPFC may constitute a central node in the pathogenesis of social deficits in the KI mice.


Asunto(s)
Trastorno del Espectro Autista , Parvalbúminas , Animales , Ratones , Receptores de N-Metil-D-Aspartato , Conducta Social
2.
Front Cell Neurosci ; 13: 518, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31849609

RESUMEN

Neuroligins (NLs) are a group of postsynaptic cell adhesion molecules that function in synaptogenesis and synaptic transmission. Genetic defects in neuroligin 3 (NL3), a member of the NL protein family, are associated with autism. Studies in rodents have revealed that mutations of NL3 gene lead to increased growth and complexity in dendrites in the central nervous system. However, the detailed mechanism is still unclear. In our study, we found that deficiency of NL3 led to morphological changes of the pyramidal neurons in layer II/III somatosensory cortex in mice, including enlarged somata, elongated dendritic length, and increased dendritic complexity. Knockdown of NL3 in cultured rat neurons upregulated Akt/mTOR signaling, resulting in both increased protein synthesis and dendritic growth. Treating neurons with either rapamycin to inhibit the mTOR or LY294002 to inhibit the PI3K/Akt activity rescued the morphological abnormalities resulting from either NL3 knockdown or knockout (KO). In addition, we found that the hyperactivated Akt/mTOR signaling associated with NL3 defects was mediated by a reduction in phosphatase and tensin (PTEN) expression, and that MAGI-2, a scaffold protein, interacted with both NL3 and PTEN and could be a linker between NL3 and Akt/mTOR signaling pathway. In conclusion, our results suggest that NL3 regulates neuronal morphology, especially dendritic outgrowth, by modulating the PTEN/Akt/mTOR signaling pathway, probably via MAGI-2. Thereby, this study provides a new link between NL3 and neuronal morphology.

5.
Neuron ; 97(6): 1253-1260.e7, 2018 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-29503190

RESUMEN

Neuroligins (NLs) are critical for synapse formation and function. NL3 R451C is an autism-associated mutation. NL3 R451C knockin (KI) mice exhibit autistic behavioral abnormalities, including social novelty deficits. However, neither the brain regions involved in social novelty nor the underlying mechanisms are clearly understood. Here, we found decreased excitability of fast-spiking interneurons and dysfunction of gamma oscillation in the medial prefrontal cortex (mPFC), which contributed to the social novelty deficit in the KI mice. Neuronal firing rates and phase-coding abnormalities were also detected in the KI mice during social interactions. Interestingly, optogenetic stimulation of parvalbumin interneurons in the mPFC at 40 Hz nested at 8 Hz positively modulated the social behaviors of mice and rescued the social novelty deficit in the KI mice. Our findings suggest that gamma oscillation dysfunction in the mPFC leads to social deficits in autism, and manipulating mPFC PV interneurons may reverse the deficits in adulthood.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Ritmo Gamma/fisiología , Aprendizaje por Laberinto/fisiología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Corteza Prefrontal/metabolismo , Conducta Social , Animales , Trastorno Autístico/genética , Trastorno Autístico/fisiopatología , Técnicas de Sustitución del Gen/métodos , Células HEK293 , Humanos , Masculino , Ratones , Ratones Transgénicos , Optogenética/métodos , Corteza Prefrontal/fisiopatología , Distribución Aleatoria
6.
J Biol Chem ; 291(36): 18856-66, 2016 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-27417137

RESUMEN

Long term synaptic plasticity, such as long term potentiation (LTP), has been widely accepted as a cellular mechanism underlying memory. Recently, it has been unraveled that Shp2 plays a role in synaptic plasticity and memory in Drosophila and mice, revealing significant and conserved effects of Shp2 in cognitive function. However, the exact mechanism underlying this function of Shp2 in synaptic plasticity and memory still remains elusive. Here, we examine the regulation of Shp2 in hippocampal LTP and contextual fear conditioning. We find that Shp2 is rapidly recruited into spines after LTP induction. Furthermore, the phosphorylation level of Shp2 at Tyr-542 is elevated after LTP stimuli either in cultured hippocampal neurons or acute slices. Notably, contextual fear conditioning also regulates the phosphorylation level of Shp2 at Tyr-542, suggesting fine-tuned regulation of Shp2 in LTP and memory formation. By using a Shp2-specific inhibitor and adeno-associated virus-Cre mediated Shp2 knock-out in cultured neurons, we provide evidence that the phosphatase activity of Shp2 is critical for activity-dependent AMPA receptor surface trafficking. Collectively, our results have revealed a regulatory mechanism of Shp2 underlying LTP and memory, broadening our understanding of Shp2 in cognitive function.


Asunto(s)
Hipocampo/fisiología , Potenciación a Largo Plazo/fisiología , Memoria/fisiología , Neuronas/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Receptores AMPA/metabolismo , Animales , Cognición/fisiología , Drosophila melanogaster , Técnicas de Silenciamiento del Gen , Hipocampo/citología , Ratones , Neuronas/citología , Transporte de Proteínas/fisiología , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Ratas , Ratas Sprague-Dawley , Receptores AMPA/genética
7.
Cell Res ; 25(7): 818-36, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26088419

RESUMEN

The N-methyl-D-aspartate receptor (NMDAR) in adult forebrain is a heterotetramer mainly composed of two GluN1 subunits and two GluN2A and/or GluN2B subunits. The synaptic expression and relative numbers of GluN2A- and GluN2B-containing NMDARs play critical roles in controlling Ca(2+)-dependent signaling and synaptic plasticity. Previous studies have suggested that the synaptic trafficking of NMDAR subtypes is differentially regulated, but the precise molecular mechanism is not yet clear. In this study, we demonstrated that Bip, an endoplasmic reticulum (ER) chaperone, selectively interacted with GluN2A and mediated the neuronal activity-induced assembly and synaptic incorporation of the GluN2A-containing NMDAR from dendritic ER. Furthermore, the GluN2A-specific synaptic trafficking was effectively disrupted by peptides interrupting the interaction between Bip and GluN2A. Interestingly, fear conditioning in mice was disrupted by intraperitoneal injection of the interfering peptide before training. In summary, we have uncovered a novel mechanism for the activity-dependent supply of synaptic GluN2A-containing NMDARs, and demonstrated its relevance to memory formation.


Asunto(s)
Retículo Endoplásmico/metabolismo , Miedo/fisiología , Proteínas de Choque Térmico/metabolismo , Memoria/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/metabolismo , Animales , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...