Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 11(19): e2401254, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38483920

RESUMEN

Pancreatic fibrosis (PF) is primarily characterized by aberrant production and degradation modes of extracellular matrix (ECM) components, resulting from the activation of pancreatic stellate cells (PSCs) and the pathological cross-linking of ECM mediated by lysyl oxidase (LOX) family members. The excessively deposited ECM increases matrix stiffness, and the over-accumulated reactive oxygen species (ROS) induces oxidative stress, which further stimulates the continuous activation of PSCs and advancing PF; challenging the strategy toward normalizing ECM homeostasis for the regression of PF. Herein, ROS-responsive and Vitamin A (VA) decorated micelles (named LR-SSVA) to reverse the imbalanced ECM homeostasis for ameliorating PF are designed and synthesized. Specifically, LR-SSVA selectively targets PSCs via VA, thereby effectively delivering siLOXL1 and resveratrol (RES) into the pancreas. The ROS-responsive released RES inhibits the overproduction of ECM by eliminating ROS and inactivating PSCs, meanwhile, the decreased expression of LOXL1 ameliorates the cross-linked collagen for easier degradation by collagenase which jointly normalizes ECM homeostasis and alleviates PF. This research shows that LR-SSVA is a safe and efficient ROS-response and PSC-targeted drug-delivery system for ECM normalization, which will propose an innovative and ideal platform for the reversal of PF.


Asunto(s)
Matriz Extracelular , Fibrosis , Nanopartículas , Especies Reactivas de Oxígeno , Especies Reactivas de Oxígeno/metabolismo , Matriz Extracelular/metabolismo , Animales , Fibrosis/metabolismo , Resveratrol/farmacología , Humanos , Células Estrelladas Pancreáticas/metabolismo , Células Estrelladas Pancreáticas/efectos de los fármacos , Páncreas/metabolismo , Páncreas/patología , Enfermedades Pancreáticas/metabolismo , Modelos Animales de Enfermedad , Estrés Oxidativo/efectos de los fármacos , Vitamina A/metabolismo , Ratones , Ratas , Sistemas de Liberación de Medicamentos/métodos
2.
J Control Release ; 366: 732-745, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38242209

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with high mortality. The Food and Drug Administration-approved drugs, nintedanib and pirfenidone, could delay progressive fibrosis by inhibiting the overactivation of fibroblast, however, there was no significant improvement in patient survival due to low levels of drug accumulation and remodeling of honeycomb cyst and interstitium surrounding the alveoli. Herein, we constructed a dual drug (verteporfin and pirfenidone)-loaded nanoparticle (Lip@VP) with the function of inhibiting airway epithelium fluidization and fibroblast overactivation to prevent honeycomb cyst and interstitium remodeling. Specifically, Lip@VP extensively accumulated in lung tissues via atomized inhalation. Released verteporfin inhibited the fluidization of airway epithelium and the formation of honeycomb cyst, and pirfenidone inhibited fibroblast overactivation and reduced cytokine secretion that promoted the fluidization of airway epithelium. Our results indicated that Lip@VP successfully rescued lung function through inhibiting honeycomb cyst and interstitium remodeling. This study provided a promising strategy to improve the therapeutic efficacy for IPF.


Asunto(s)
Quistes , Fibrosis Pulmonar Idiopática , Nanopartículas , Humanos , Verteporfina , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Pulmón
3.
Adv Sci (Weinh) ; 11(7): e2306899, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38064164

RESUMEN

In advanced liver fibrosis (LF), macrophages maintain the inflammatory environment in the liver and accelerate LF deterioration by secreting proinflammatory cytokines. However, there is still no effective strategy to regulate macrophages because of the difficulty and complexity of macrophage inflammatory phenotypic modulation and the insufficient therapeutic efficacy caused by the extracellular matrix (ECM) barrier. Here, AC73 and siUSP1 dual drug-loaded lipid nanoparticle is designed to carry milk fat globule epidermal growth factor 8 (MFG-E8) (named MUA/Y) to effectively inhibit macrophage proinflammatory signals and degrade the ECM barrier. MFG-E8 is released in response to the high reactive oxygen species (ROS) environment in LF, transforming macrophages from a proinflammatory (M1) to an anti-inflammatory (M2) phenotype and inducing macrophages to phagocytose collagen. Collagen ablation increases AC73 and siUSP1 accumulation in hepatic stellate cells (HSCs) and inhibits HSCs overactivation. Interestingly, complete resolution of liver inflammation, significant collagen degradation, and HSCs deactivation are observed in methionine choline deficiency (MCD) and CCl4 models after tail vein injection of MUA/Y. Overall, this work reveals a macrophage-focused regulatory treatment strategy to eliminate LF progression at the source, providing a new perspective for the clinical treatment of advanced LF.


Asunto(s)
Cirrosis Hepática , Macrófagos , Humanos , Cirrosis Hepática/terapia , Macrófagos/metabolismo , Colágeno , Fenotipo
4.
ACS Nano ; 16(9): 14029-14042, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36036898

RESUMEN

During liver fibrogenesis, liver sinusoidal capillarization and extracellular matrix (ECM) deposition construct dual pathological barriers to drug delivery. Upon capillarization, the vanished fenestrae in liver sinusoidal endothelial cells (LSECs) significantly hinder substance exchange between blood and liver cells, while excessive ECM further hinders the delivery of nanocarriers to activated hepatic stellate cells (HSCs). Herein, an efficient nanodrug delivery system was constructed to sequentially break through the capillarized LSEC barrier and the deposited ECM barrier. For the first barrier, LSEC-targeting and fenestrae-repairing nanoparticles (named HA-NPs/SMV) were designed on the basis of the modification with hyaluronic acid and the loading of simvastatin (SMV). For the second barrier, collagenase I and vitamin A codecorated nanoparticles with collagen-ablating and HSC-targeting functions (named CV-NPs/siCol1α1) were prepared to deliver siCol1α1 with the goal of inhibiting collagen generation and HSC activation. Our in vivo results showed that upon encountering the capillarized LSEC barrier, HA-NPs/SMV rapidly released SMV and exerted a fenestrae-repairing function, which allowed more CV-NPs/siCol1α1 to enter the space of Disse to degrade deposited collagen and finally to achieve higher accumulation in activated HSCs. Scanning electronic microscopy images showed the recovery of liver sinusoids, and analysis of liver tissue sections demonstrated that HA-NPs/SMV and CV-NPs/siCol1α1 had a synergetic effect. Our pathological barrier-normalization strategy provides an antifibrotic therapeutic regimen.


Asunto(s)
Capilares , Células Endoteliales , Capilares/metabolismo , Capilares/patología , Colagenasas/farmacología , Células Endoteliales/metabolismo , Matriz Extracelular/metabolismo , Células Estrelladas Hepáticas/metabolismo , Humanos , Ácido Hialurónico/farmacología , Hígado/metabolismo , Cirrosis Hepática/metabolismo , Simvastatina/metabolismo , Simvastatina/farmacología , Vitamina A/metabolismo , Vitamina A/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...