Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Neuroscience ; 557: 24-36, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39128700

RESUMEN

OBJECTIVE: This study aims to investigate the effect of electroacupuncture (EA) treatment on depression, and the potential molecular mechanism of EA in depression-like behaviors rats. METHODS: A total of 40 male Sprague Dawley rats were divided into three groups: normal control, chronic unpredictable mild stress (CUMS), and EA (CUMS + EA). The rats in CUMS and EA groups underwent chronic stress for 10 weeks, and EA group rats received EA treatment for 4 weeks starting from week 7. Body weight and behavioral tests, including the sucrose preference test (SPT), the forced swimming test (FST), and the open field test (OFT) were monitored. Gut microbiota composition was assessed via 16S rDNA sequencing, and lipid metabolism was analyzed by using UPLC-Q-TOF/MS technology. RESULTS: In comparison to CUMS group, EA could improve the behavior including bodyweight, immovability time, sucrose preference index, crossing piece index and rearing times index. After 4 weeks of EA treatment, 5-HT in hippocampus, serum and colon of depressive rats were simultaneously increased, indicating a potential alleviation of depression-like behaviors. In future studies revealed that EA could regulate the distribution and functions of gut microbiota, and improve the intestinal barrier function of CUMS rats. The regulation of intestinal microbial homeostasis by EA may further affect lipid metabolism in CUMS rats, and thus play an antidepressant role. CONCLUSION: This study suggested that EA has potential antidepressant effects by regulating gut microbiota composition and abundance, subsequently affecting lipid metabolism.


Asunto(s)
Depresión , Modelos Animales de Enfermedad , Electroacupuntura , Microbioma Gastrointestinal , Ratas Sprague-Dawley , Estrés Psicológico , Animales , Electroacupuntura/métodos , Microbioma Gastrointestinal/fisiología , Masculino , Estrés Psicológico/terapia , Estrés Psicológico/microbiología , Estrés Psicológico/metabolismo , Depresión/terapia , Depresión/microbiología , Hipocampo/metabolismo , Ratas , Serotonina/metabolismo , Conducta Animal/fisiología , Metabolismo de los Lípidos/fisiología
2.
Theor Appl Genet ; 137(4): 95, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582777

RESUMEN

Grapevine (Vitis vinifera L.) is an economically important fruit crop cultivated worldwide. In China, grapevine cultivation is very extensive, and a few Vitis grapes have excellent pathogen and stress resistance, but the molecular mechanisms underlying the grapevine response to stress remain unclear. In this study, a microRNA (miRNA; miR827a), which negatively regulates its target gene VqMYB14, a key regulatory role in the synthesis of stilbenes, was identified in Vitis quinquangularis (V. quinquangularis) using transcriptome sequencing. Using overexpression and silencing approaches, we found that miR827a regulates the synthesis of stilbenes by targeting VqMYB14. We used flagellin N-terminal 22-amino-acid peptide (flg22), the representative elicitor in plant basal immunity, as the elicitor to verify whether miR827a is involved in the basal immunity of V. quinquangularis. Furthermore, the promoter activity of miR827a was alleviated in transgenic grape protoplasts and Arabidopsis thaliana following treatment with flg22 and Pseudomonas syringae pv. Tomato DC3000 (Pst DC3000), respectively. In addition, yeast one-hybrid and dual luciferase reporter assay revealed that the ethylene transcription factor VqERF057 acted as a key regulator in the inhibition of miR827a transcription. These results will contribute to the understanding of the biological functions of miR827a in grapevine and clarify the molecular mechanism of the interaction between miR827a and VqMYB14.


Asunto(s)
Arabidopsis , Estilbenos , Vitis , Resistencia a la Enfermedad/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Inmunidad de la Planta/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Arabidopsis/genética , Vitis/genética , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/genética
3.
Plant Sci ; 341: 111994, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38262480

RESUMEN

As significant phytoalexins, stilbene compounds can improve the stress resistance of grapes under biotic and abiotic stress conditions and have biological effects such as antitumour, antioxidant, immune regulation and cardiovascular protection activities in humans. RESVERATROL SYNTHASE (RS), also known as STILBENE SYNTHASE (STS), is the critical enzyme regulating stilbene synthesis and has been identified in a few plant species. However, the regulatory mechanisms of stilbene synthesis are uncertain. In this study, an NAC family transcription factor from Vitis quinquangularis, named VqNAC44, was characterized as an indirect regulator of stilbene synthesis. It is worth noting that VqNAC44 did not bind to the STS promoter nor did it interact with the STS protein but interacted with the MYB transcription factor VqMYB15. This interaction between VqMYB15 and VqNAC44 was validated by a yeast two-hybrid assay and bimolecular fluorescence complementation. Overexpressing VqNAC44 in Arabidopsis thaliana significantly increased its tolerance to biotic and abiotic stresses. Transient overexpression of VqNAC44 and VqMYB15 in grape leaves resulted in increased expression of the STS gene and increased production of stilbene compounds. The experimental results confirmed that VqNAC44 regulated stilbene synthesis by interacting with VqMYB15, thereby enhancing the plant stress resistance.


Asunto(s)
Arabidopsis , Estilbenos , Vitis , Humanos , Vitis/metabolismo , Resistencia a la Enfermedad/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Arabidopsis/genética , Aciltransferasas/genética , Aciltransferasas/metabolismo , Estilbenos/metabolismo , China , Regulación de la Expresión Génica de las Plantas
4.
Org Lett ; 25(41): 7476-7480, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37811851

RESUMEN

A catalytic asymmetric 1,3-acyloxy shift/polyene cyclization cascade has been achieved with good enantioselectivities under the catalysis of the chiral Au(I) reagent. The synthetic utility of this method has been showcased by the catalytic asymmetric total syntheses of (+)-2-ketoferruginol, (+)-fleuryinol B, and (+)-salviol. Notably, the first enantioselective total synthesis of (-)-erythroxylisin A has also been realized in 15 steps.

5.
J Fungi (Basel) ; 9(6)2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37367612

RESUMEN

The Cordyceps militaris complex, which is a special group in the genus Cordyceps, is rich in species diversity and is widely distributed in nature. Throughout the investigations of arthropod-pathogenic fungi in the national reserves and in Vietnam parks, collections of C. militaris attacking lepidopteran pupae or larvae were located in the soil and on the leaf litter. The phylogenetic analyses of the combined nrSSU, nrLSU, TEF, RPB1, and RPB2 sequence data indicated that the fungal materials collected in Vietnam belonged to C. militaris and two hidden species in the C. militaris complex. The phylogenetic analyses and morphological comparisons presented here strongly supported the descriptions of C. polystromata and C. sapaensis as new taxa as well as C. militaris as a known species. The morphological characteristics of 11 species in the C. militaris complex, which included two novel species and nine known taxa, were also compared.

6.
Neural Regen Res ; 18(8): 1795-1801, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36751808

RESUMEN

We previously showed that death-associated protein kinase 1 (DAPK1) expression is increased in hippocampal tissue in a mouse model of major depressive disorde and is related to cognitive dysfunction in Alzheimer's disease. In addition, depression is a risk factor for developing Alzheimer's disease, as well as an early clinical manifestation of Alzheimer's disease. Meanwhile, cognitive dysfunction is a distinctive feature of major depressive disorder. Therefore, DAPK1 may be related to cognitive dysfunction in major depressive disorder. In this study, we established a mouse model of major depressive disorder by housing mice individually and exposing them to chronic, mild, unpredictable stressors. We found that DAPK1 and tau protein levels were increased in the hippocampal CA3 area, and tau was hyperphosphorylated at Thr231, Ser262, and Ser396 in these mice. Furthermore, DAPK1 shifted from axonal expression to overexpression on the cell membrane. Exercise and treatment with the antidepressant drug citalopram decreased DAPK1 expression and tau protein phosphorylation in hippocampal tissue and improved both depressive symptoms and cognitive dysfunction. These results indicate that DAPK1 may be a potential reason and therapeutic target of cognitive dysfunction in major depressive disorder.

7.
Oncol Lett ; 25(1): 36, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36589664

RESUMEN

Radioiodine refractory differentiated thyroid cancer (RR-DTC) is the main factor adversely affecting the overall survival rate of patients with thyroid cancer. The aim of the present study was to investigate the underlying molecular mechanism of pathogenesis of RR-DTC and to explore novel therapeutic targets for clinical treatment. A proteomic analysis was performed using the tumor tissues of patients with RR-DTC. A total of 6 metastatic lymph nodes were collected during lymph node dissection, 3 from patients with RR-DTC and 3 from patients with papillary thyroid cancer. The expression of chitinase-3-like 1 (CHI3L1) and sodium-iodine symporter (NIS) in the tumor tissue was detected by immunohistochemistry (IHC). Western blotting was used to detect the expression of CHI3L1, phosphorylated (p)-MEK and p-ERK1/2 in PTC-K1 cells transfected with CHI3L1 overexpression vector. The proteomic analysis identified 665 differentially expressed proteins (DEPs), including 327 upregulated and 338 downregulated proteins in the RR-DTC group, which were enriched in 59 signaling pathways by Kyoto Encyclopedia of Genes and Genomes database analysis. In particular, CHI3L1 was demonstrated to be significantly upregulated in RR-DTC as evidenced by quantitative proteomic analysis and IHC. Western blotting suggested that the overexpression of CHI3L1 activated the MEK/ERK1/2 signaling pathway, which may lead to NIS dysfunction. In conclusion, the present study suggests that CHI3L1 is a potential molecular target for the radiotherapy of patients with RR-DTC.

8.
Front Pharmacol ; 13: 993498, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36506533

RESUMEN

Osteoarthritis (OA) is a multifactorial and chronic degenerative joint disease. Due to the adverse effects of currently used drugs, a safer and more effective therapy for treating OA is needed. Peroxisome proliferator-activated receptor-γ (PPARγ) is a key protein protecting cartilage. DNMT1-mediated hypermethylation of PPARγ promoter leads to its suppression. Therefore, DNMT1 might be an effective target for exerting cartilage protective effects by regulating the epigenetic expression of PPARγ. Dabushen decoction (DD) is a representative prescription of Dunhuang ancient medical prescription, which has a potential therapeutic effect on OA. So far, the research of the efficacy and material basis of DD in the treatment of OA remains unclear. In this study, Micro-CT, HE staining, S-O staining, and immunohistochemistry analysis were used to demonstrate that DD increased the expression of PPARγ and collagen synthesis in an OA rat model. Next, the structure of DNMT1 was used to screen the active constituents of DD by molecular docking method for treatment OA. Seven potential active constituents, including isoliquiritigenin, emodin, taxifolin, catalpol, alisol A, zingerone, and schisandrin C were hited. The protective effect of the potential active constituents to chondrocytes were evaluated by protein capillary electrophoresis, immunofluorescence assays, and ex vivo culture of rat knee cartilage. The five constituents, such as alisol A, emodin, taxifolin, isoliquiritigenin, and schisandrin C could promote the expression of PPARγ and ameliorate IL-1ß-induced downregulation of collagen II and the production of MMP-13. Alisol A and Emodin could effectively mitigate cartilage damage. At last, molecular dynamics simulations with MM-GBSA method was applied to investigate the interaction pattern of the active constituents and DNMT1 complexes. The five constituents, such as alisol A, emodin, taxifolin, isoliquiritigenin, and schisandrin C achieved a stable binding pattern with DNMT1, in which alisol A has a relatively high binding free energy. In conclusion, this study elucidates that the active constituents of DD (alisol A, emodin, taxifolin, isoliquiritigenin, and schisandrin C) could ameliorate osteoarthritis via PPARγ preservation by targeting DNMT1.These findings facilitated clinical use of DD and provided a valuable strategy for developing natural epigenetic modulators from Chinese herbal formula.

9.
Chem Biodivers ; 19(4): e202100946, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35253972

RESUMEN

We identified two new diterpenoidal acrocalyenes A (1) and B (2) through chemical investigation on Acrocalymma sp., a plant-associated fungus from the tender stem isolates of Sinomenium acutum collected from the Qinling Mountains, along with seven already-recognized compounds (3-9). The HR-ESI-TOF-MS and 1D/2D NMR data were utilized for structural elucidation of these compounds, and the single-crystal X-ray diffraction was employed for absolute configuration clarification of the novel acrocalyenes 1 and 2. Bioassays revealed that the cytotoxicities of compounds 2, 4, 6, 7, and 8 against three human carcinoma cells (RKO, HeLa and HCC-1806) were moderate to strong, with IC50 between 6.70-38.82 µM. These isolates were also evaluated for their fungal resistant potentials against Botrytis cinerea, Fusarium culmorum and Fusarium solani, in which 3 displayed significant inhibitory effects on all three phytopathogenic fungi, showing respective MIC of 50, 25 and 25 µM.


Asunto(s)
Ascomicetos , Carcinoma Hepatocelular , Diterpenos , Neoplasias Hepáticas , Antifúngicos/química , Antifúngicos/farmacología , Ascomicetos/química , Diterpenos/química , Diterpenos/farmacología , Humanos , Sinomenium
10.
Org Lett ; 24(6): 1394-1399, 2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35132855

RESUMEN

An efficient copper-catalyzed asymmetric ring-opening reaction of diaryliodonium salts with imides has been developed, affording a wide range of axially chiral 2-imidobiaryl compounds with excellent enantioselectivities and better convertibility. The potential utility of the current method has been supported by the synthesis of two known chiral ligands with better efficiency, which would be of great significance to the development of other catalytic asymmetric reactions.

11.
Hortic Res ; 2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35039862

RESUMEN

In the current study, we used a grapevine cell line in which actin filaments are labeled by GFP to show that aluminum causes actin remodeling through activation of NADPH oxidase in the plasma membrane, followed by activation of phytoalexin synthesis genes. Elimination of actin filaments by latrunculin B disrupts gene activation and inhibition of MAPK signaling by the inhibitor PD98059. Interestingly, aluminum also induces the transcription of ISOCHORISMATE SYNTHASE, a key enzyme for the synthesis of salicylic acid, as well as PR1, a gene that is known to be responsive to salicylic acid. However, while salicylic acid responses are usually a hallmark of the hypersensitive response, aluminum-triggered defense is not accompanied by cell death. Both actin remodeling and gene activation in response to aluminum can be suppressed by the natural auxin indole acetic acid, suggesting that the actin response is not caused by nonspecific signaling. Further evidence for the specificity of the aluminum-triggered activation of phytoalexin synthesis genes comes from experiments in which plant peptide elicitors induce significant cellular mortality but do not evoke induction of these transcription. The response in grapevine cells can be recapitulated in grapevine leaf discs from two genotypes contrasting in stilbene inducibility. Here, aluminum can induce accumulation of the central grapevine phytoalexin, the stilbene aglycone trans-resveratrol; this is preceded by a rapid induction of transcription for RESVERATROL SYNTHASE and the regulating transcription factor MYB14. The amplitude of this induction reflects the general stilbene inducibility of these genotypes, indicating that the aluminum effect is not caused by nonspecific toxicity but by activation of specific signaling pathways. The findings are discussed in relation to a model in which actin filaments activate a specific branch of defense signaling, acting in concert with calcium-dependent PAMP-triggered immunity. This pathway links the apoplastic oxidative burst through MAPK signaling with the activation of defense-related transcription.

12.
Brain Behav Immun ; 100: 88-104, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34808295

RESUMEN

Prolonged postsurgical pain, which is associated with multiple risk factors in the perioperative stage, is a common medical and social problem worldwide. Suitable animal models should be established to elucidate the mechanisms underlying the perioperative prolonged postsurgical pain. In this study, standard and modified social defeat stress mice models, including chronic social defeat stress (CSDS), chronic nondiscriminatory social defeat stress (CNSDS) and vicarious social defeat stress (VSDS), were applied to explore the effect of perioperative social defeat stress on postsurgical pain in male and female mice. Our results showed that exposure to preoperative CSDS could induce prolonged postsurgical pain in defeated mice regardless of susceptibility or resilience differentiated by the social interaction test. Similar prolongation of incision-induced mechanical hypersensitivity was also observed in both sexes upon exposing to CNSDS or VSDS in the preoperative period. Moreover, we found that using the modified CNSDS or VSDS models at different recovery stages after surgery could still promote abnormal pain without sex differences. Further studies revealed the key role of spinal microglial activation in the stress-induced transition from acute to prolonged postoperative pain in male but not female mice. Together, these data indicate that perioperative social defeat stress is a vital risk factor for developing prolonged postoperative pain in both sexes, but the promotion of stress-induced prolonged postoperative pain by spinal microglial activation is sexually dimorphic in mice.


Asunto(s)
Microglía , Derrota Social , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Dolor Postoperatorio , Conducta Social , Columna Vertebral , Estrés Psicológico
13.
Planta ; 254(5): 105, 2021 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-34687358

RESUMEN

MAIN CONCLUSION: Transcriptional and metabolic regulation of aluminium tolerance of Chinese wild Vitis quinquangularis after Al treatment for 12 h: genes and pathways related to stress resistance are activated to cope with Al stress. The phytotoxicity of aluminium (Al) has become a major issue in inhibiting plant growth in acidic soils. Chinese wild Vitis species have excellent stress resistance. In this study, to explore the mechanism underlying Al tolerance in Chinese wild Vitis quinquangularis, we conducted a transcriptome analysis to understand the changes in gene expression and pathways in V. quinquangularis leaves after Al treatment for 12 h (Al_12 h). Compared with the control (CK) treatment, 2266 upregulated differentially expressed genes (DEGs) and 2943 downregulated DEGs were identified after Al treatment. We analysed the top 60 upregulated DEGs and found that these genes were related mostly to cell wall organization or biogenesis, transition metal ion binding, etc. Another analysis of all the upregulated DEGs showed that genes related to the ABC transport pathway, salicylic acid (SA), jasmonic acid (JA) and abscisic acid (ABA) hormone signalling pathway were expressed. Transcriptome and metabolome analysis revealed that genes and metabolites (phenylalanine, cinnamate and quercetin) related to the phenylalanine metabolic pathway were expressed. In summary, the results provide a new contribution to a better understanding of the metabolic changes that occur in grapes after Al stress as well as to research on improving the resistance of grape cultivars.


Asunto(s)
Vitis , Aluminio/toxicidad , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Metaboloma , Transcriptoma , Vitis/genética
14.
Aging (Albany NY) ; 13(20): 23620-23636, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34644262

RESUMEN

Amyloid-ß (Aß) accumulating is considered as a causative factor for formation of senile plaque in Alzheimer's disease (AD), but its mechanism is still elusive. The Nicotinamide mononucleotide adenylyltransferase 2 (Nmnat2), a key redox cofactor for energy metabolism, is reduced in AD. Accumulative evidence has shown that the decrease of α-secretase activity, a disintegrin and metalloprotease domain 10 (ADAM10), is responsible for the increase of Aß productions in AD patient's brain. Here, we observe that the activity of α-secretase ADAM10 and levels of Nmnat2 are significantly decreased, meanwhile there is a simultaneous elevation of Aß in Tg2576 mice. Over-expression of Nmnat2 increases the mRNA expression of α-secretase ADAM10 and its activity and inhibits Aß production in N2a/APPswe cells, which can be abolished by Compound C, an AMPK antagonist, suggesting that AMPK is involved in over-expression of Nmnat2 against Aß production. The further assays demonstrate that Nmnat2 activates AMPK by up-regulating the ratio of NAD+/NADH, moreover AMPK agonist AICAR can also increase ADAM10 activity and reduces Aß1-40/1-42. Taken together, Nmnat2 suppresses Aß production and up-regulates ADAM10 in AMPK activity-dependent manner, suggesting that Nmnat2 may serve as a new potential target in arresting AD.


Asunto(s)
Proteína ADAM10 , Proteínas Quinasas Activadas por AMP , Secretasas de la Proteína Precursora del Amiloide , Amiloide , Proteínas de la Membrana , Nicotinamida-Nucleótido Adenililtransferasa , Proteína ADAM10/genética , Proteína ADAM10/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Amiloide/genética , Amiloide/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Línea Celular , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Nicotinamida-Nucleótido Adenililtransferasa/genética , Nicotinamida-Nucleótido Adenililtransferasa/metabolismo , Regulación hacia Arriba/genética
15.
Technol Cancer Res Treat ; 20: 15330338211027910, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34191658

RESUMEN

BACKGROUND: The aim of this study was to investigate the predictive value of a prognostic model based on the lymphocyte-to-monocyte ratio (LMR) before radioiodine treatment for the recurrence of papillary thyroid carcinoma (PTC). METHODS: Clinicopathological data of 441 patients with papillary thyroid cancer were collected retrospectively. The Receiver operating characteristic (ROC) was used to determine the optimal cut-off value for predicting PTC recurrence by LMR before radioiodine treatment. Recurrence was the endpoint of the study, and survival was estimated by the Kaplan-Meier method, and any differences in survival were evaluated with a stratified log-rank test. Univariate and multifactorial analyses were performed using Cox proportional-hazards models to identify risk factors associated with PTC recurrence. RESULTS: The ROC curve showed that the best cut-off value of LMR before radioiodine treatment to predict recurrence in patients with PTC was 6.61, with a sensitivity of 54.1%, a specificity of 73%, and an area under the curve of 0.628. The recurrence rate was significantly higher in the low LMR group (16%) than in the high LMR group (5%) (P = 0.001, χ2 = 12.005). Multifactorial analysis showed that LMR < 6.61 (P = 0.006; HR = 2.508) and risk stratification (high risk) (P = 0.000; HR = 5.076) before radioiodine treatment were independent risk factors predicting recurrence in patients with PTC. Patients with preoperative LMR < 6.61 and high risk stratification had the lowest recurrence-free survival rate and the shortest recurrence-free survival time. CONCLUSIONS: The LMR-based prognostic model before radioactive iodine treatment is valuable for early prediction of PTC recurrence and it can be used in clinical practice as a supplement to risk stratification and applied in combination to help screen out patients with poorer prognosis early.


Asunto(s)
Linfocitos , Monocitos , Recurrencia Local de Neoplasia/sangre , Cáncer Papilar Tiroideo/sangre , Neoplasias de la Tiroides/sangre , Adulto , Femenino , Humanos , Radioisótopos de Yodo/uso terapéutico , Estimación de Kaplan-Meier , Recuento de Linfocitos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Pronóstico , Modelos de Riesgos Proporcionales , Curva ROC , Estudios Retrospectivos , Tasa de Supervivencia , Cáncer Papilar Tiroideo/patología , Cáncer Papilar Tiroideo/radioterapia , Neoplasias de la Tiroides/patología , Neoplasias de la Tiroides/radioterapia
16.
Onco Targets Ther ; 13: 8223-8232, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32884300

RESUMEN

BACKGROUND: New evidence suggests that histidine triad nucleotide-binding protein 1 (Hint1) exerts a tumor suppressor effect in various human tumors, such as colorectal cancer and gastric cancer. However, it has not been reported whether Hint1 is involved in the occurrence and development of osteosarcoma (OS). MATERIALS AND METHODS: The present study investigated the role of Hint1 in human OS cells by using cell lines, including 143B, U2OS, KHOS-240S, Saos-2 and MG-63. Cell proliferation and apoptosis were detected by flow cytometry. RESULTS: The present result revealed that Hint1 is downregulated in these cell lines. The overexpression of Hint1 by adenovirus transfection in 143B and MG63 cell lines suppressed the proliferation and cell cycle, and increased the cell apoptosis. Mechanically, it was found that Hint1 downregulated the cyclin D1 expression via FOXO1 inhibition. Furthermore, FOXO1 overexpression in the 143B and MG63 cell lines significantly blurred the effects of Hint1 on cellular proliferation and apoptosis. CONCLUSION: The present study indicates that Hint1 inhibits the development of OS by regulating FoxO1-cyclin D1, suggesting that Hint1 may be a new method for the treatment of OS.

17.
Plant Signal Behav ; 15(7): 1773664, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32475217

RESUMEN

The transcription factor MYB15 plays an important role in grape basal immunity, and its promoter can be used as a potential target in resistance breeding. However, the regulatory mechanisms of cis-elements in its promoter region under a variety of stresses remain unclear. In this study, we identified some putative cis-regulatory elements present upstream of MYB15 in Vitis quinquangularis Shanyang (pVqMYB15_SY) and subsequently characterized the function of these elements using reporter assays. Our results showed that TCA-elements 1 and 2, ABRE, MYC and 3-AF1 binding site 1 are key cis-regulatory elements in pVqMYB15_SY and play important roles in plant bio/abiotic stress resistance.


Asunto(s)
Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas/genética , Vitis/genética , Vitis/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas de Plantas/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
18.
Chem Pharm Bull (Tokyo) ; 68(2): 133-139, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32009080

RESUMEN

C1q/tumor necrosis factor (TNF)-related protein 12 (CTRP12) is a secretory protein that participates in the regulation of glucose and lipid metabolism in obesity and diabetes. Its role in cardiovascular disease, particularly sepsis-induced cardiac injury, is unclear. Here, we stimulated cardiomyocytes with lipopolysaccharide (LPS) to establish an in vitro cardiomyocyte injury model and CTRP12 was overexpressed with an adenovirus delivery system. Overexpression of CTRP12 reduced the transcription and release of pro-inflammatory cytokines from LPS-stimulated cardiomyocytes, including TNFα, interleukin-1 (IL-1), and IL-6. Reactive oxygen species (ROS) level increased and the oxidation/redox system was disturbed in LPS-stimulated cardiomyocytes, as evident from the decrease in superoxide dismutase activity and an increase in reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity and malondialdehyde level. CTRP12 overexpression decreased the increasing level of ROS and ameliorated the unbalance in the oxidation/redox system in LPS-stimulated cardiomyocytes. The viability of cardiomyocytes decreased after LPS stimulation, and the cells underwent apoptosis. CTRP12-overexpressing cardiomyocytes showed a decrease in the number of terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL)-positive cells, and the ratio of B cell lymphoma (Bcl)-1/Bax in these cells was recovered. In comparison with the control group, LPS-stimulated cardiomyocytes showed reduced expression of nuclear factor E2-related factor 2 (NRF2), while CTRP12-overexpressing cardiomyocytes showed elevated NRF2 expression. Small-interfering RNA-mediated silencing of NRF2 expression in cardiomyocytes resulted in the inhibition of the protective effects of CTRP12. Thus, CTRP12 ameliorated injury in LPS-stimulated cardiomyocytes in an NRF2-dependent manner.


Asunto(s)
Inflamación/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Lipopolisacáridos/inmunología , Miocitos Cardíacos/inmunología , Regulación hacia Arriba , Adenoviridae/genética , Animales , Línea Celular , Células Cultivadas , Regulación hacia Abajo , Técnicas de Transferencia de Gen , Inflamación/inmunología , Inflamación/patología , Péptidos y Proteínas de Señalización Intercelular/inmunología , Interleucina-1/genética , Interleucina-1/inmunología , Interleucina-6/genética , Interleucina-6/inmunología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Ratas , Ratas Sprague-Dawley , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología
19.
J Invertebr Pathol ; 172: 107333, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32001215

RESUMEN

Beauveria pseudobassiana has great potential for use in the management of various insect pests. In the present study, we aimed to explore the the virulence of B. pseudobassiana isolated from a diversity of hosts to Bombyx mori and Tenebrio molitor larvae. To this end, 15B. pseudobassiana isolates from 10 different geographical locations were identified based on morphological characteristics and molecular data. The phylogenetic positions of the isolates were evaluated according to morphological features and phylogenetic inferences based on six loci (nrSSU, nrLSU, TEF, RPB1, RPB2 and Bloc). In addition to growth in soil, the B. pseudobassiana isolates in our study were isolated from a wide host range that extended to 5 orders, 11 families, and 14 species. Moreover, anamorphically typified B. pseudobassiana was grown for the first time from teleomorph stromata. Pathogenicity of the B. pseudobassiana isolates from the different hosts was determined with two bioassays using B. mori and T. molitor larvae. The results indicated that mortality of B. mori caused by the lepidopteran isolates was significantly higher than that of isolates from other hosts, and virulence of the coleopteran isolates to T. molitor was significantly higher than that of isolates from other hosts. The host specificity of B. pseudobassiana should be studied in more detail before future consideration of isolates for use in biological control of pests.


Asunto(s)
Beauveria/patogenicidad , Bombyx/microbiología , Tenebrio/microbiología , Animales , Beauveria/clasificación , Beauveria/citología , Beauveria/genética , Bombyx/crecimiento & desarrollo , Larva/crecimiento & desarrollo , Larva/microbiología , Filogenia , Microbiología del Suelo , Tenebrio/crecimiento & desarrollo , Virulencia
20.
Int J Mol Sci ; 21(3)2020 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-31973146

RESUMEN

In the current study, we identified a transcription factor, MYB14, from Chinese wild grape, Vitis quinquangularis-Pingyi (V. quinquangularis-PY), which could enhance the main stilbene contents and expression of stilbene biosynthesis genes (StSy/RS) by overexpression of VqMYB14. The promoter of VqMYB14 (pVqMYB14) was shown to be induced as part of both basal immunity (also called pathogen-associated molecular pattern (PAMP)-triggered immunity, PTI) and effector-triggered immunity (ETI), triggered by the elicitors flg22 and harpin, respectively. This was demonstrated by expression of pVqMYB14 in Nicotiana benthamiana and Vitis. We identified sequence differences, notably an 11 bp segment in pVqMYB14 that is important for the PTI/ETI, and particularly for the harpin-induced ETI response. In addition, we showed that activation of the MYB14 promoter correlates with differences in the expression of MYB14 and stilbene pattern induced by flg22 and harpin. An experimental model of upstream signaling in V. quinquangularis-PY is presented, where early defense responses triggered by flg22 and harpin partially overlap, but where the timing and levels differ. This translates into a qualitative difference with respect to patterns of stilbene accumulation.


Asunto(s)
Mecanismos de Defensa , Inmunidad de la Planta/fisiología , Estilbenos/metabolismo , Factores de Transcripción/metabolismo , Vitis/inmunología , Vitis/metabolismo , Calcio/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas , Biosíntesis de Proteínas , Estallido Respiratorio , Estrés Fisiológico , Nicotiana/genética , Factores de Transcripción/genética , Vitis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...