Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Micromachines (Basel) ; 14(12)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38138412

RESUMEN

Advanced manufacturing technology and systems (AMTS) combine the principles of mechanical engineering with innovative design to create products and processes that are better, faster, and more precise [...].

2.
Micromachines (Basel) ; 14(3)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36984902

RESUMEN

Advanced manufacturing technology and systems (AMTSs) combine the principles of mechanical engineering with design innovation to create products and processes that are better, faster and more precise [...].

3.
Opt Express ; 30(24): 44321-44338, 2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36523110

RESUMEN

Various micro-structure surface texturing methods have been used to produce optical functional surface in the grinding, such as the textured grinding wheel, wheel path control and off-spindle-axis grinding. However, those grinding technologies are inherently challenged to employ in large-scale surface grinding due to the extremely high requirement for wheel cutting profile dressing. In this study, a novel phase shift modulation based on wheel oscillation motion was proposed to generate the micro-structure array in ultra-precision grinding. The phase shift effect involved in the surface micro-structure generation is investigated, in which the role of the second phase shift on superimposed mode and micro-waviness forms is discussed. A theoretical model based on the tool superimposed oscillation is established to study the micro-structure texture generation mechanism by considering the second phase shift. The influence of modulation frequency in the case of phase shift and out of phase shift on the surface texture generation both for the striation pattern and micro-structure is compared to clarify the transition between the continuous grooves and the discrete micro-structure array. The study indicates that the phase shift modulation represents a novel paradigm for fabricating micro-structure array with considerable capability and high efficiency in ultra-precision grinding.

4.
Micromachines (Basel) ; 13(9)2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36144077

RESUMEN

Nano-steps, as classical nano-geometric reference materials, are very important for calibrating measurements in the semiconductor industry; therefore, controlling the height of nano-steps is critical for ensuring accurate measurements. Accordingly, in this study nano-steps with heights of 1, 2, 3 and 4 nm were fabricated with good morphology using atomic layer deposition (ALD) combined with wet etching. The roughness of the fabricated nano-steps was effectively controlled by utilizing the three-dimensional conformal ALD process. Moreover, the relationship between the surface roughness and the height was studied using a simulation-based analysis. Essentially, roughness control is crucial in fabricating nano-steps with a critical dimension of less than 5 nm. In this study, the minimum height of a nano-step that was successfully achieved by combining ALD and wet etching was 1 nm. Furthermore, the preconditions for quality assurance for a reference material and the influencing factors of the fabrication method were analyzed based on the 1 nm nano-step sample. Finally, the fabricated samples were used in time-dependent experiments to verify the optimal stability of the nano-steps as reference materials. This research is instructive to fabricate nano-geometric reference materials to within 5 nm in height, and the proposed method can be easily employed to manufacture wafer-sized step height reference materials, thus enabling its large-scale industrial application for in-line calibration in integrated circuit production lines.

5.
Micromachines (Basel) ; 13(7)2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35888923

RESUMEN

Subsurface damage of fused silica optics is one of the major factors restricting the performance of optical systems. The densification-affected deformation and fracture in fused silica under a sliding contact are investigated in this study, via three-dimensional finite element analysis (FEA). The finite element models of scratching with 70.3° conical and Berkovich indenters are established. A refined elliptical constitutive model is used to consider the influence of densification. The finite element models are experimentally verified by elastic recovery, and theoretically verified by hardness ratio. Results of densification and plastic deformation distributions indicate that the accuracy of existent sliding stress field models may be improved if the spherical/cylindrical yield region is replaced by an ellipsoid/cylindroid, and the embedding of the yield region is considered. The initiation sequence, and the locations and stages of radial, median, and lateral cracks are discussed by analyzing the predicted sliding stress fields. Median and radial cracks along the sliding direction tend to be the first cracks that emerge in the sliding and unloading stages, respectively. They coalesce to form a big median-radial crack that penetrates through the entire yield region. The fracture behavior of fused silica revealed in this study is essential in the low-damage machining of fused silica optics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA