Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Huan Jing Ke Xue ; 45(5): 2952-2961, 2024 May 08.
Artículo en Chino | MEDLINE | ID: mdl-38629556

RESUMEN

To explore the pollution characteristics and source of soil heavy metal in a coal mine area near the Yellow River in Shandong, the geo-accumulation index method and improved Nemerow pollution index method were used to evaluate the pollution characteristics of soil heavy metal. The absolute principal component-multiple linear regression model (APCS-MLR) was used to quantitatively analyze the source of soil heavy metal, and the spatial distribution of Hg and Cd were analyzed using the Kriging spatial difference method in ArcGIS. The result accuracy of the APCS-MLR model was further verified. The results showed that:The measured contents of soil heavy metal Cu, Zn, Pb, Cr, Cd, Ni, As, and Hg all exceeded the normal site, among which, Hg and Cd exceeded the background values of soil elements in Shandong. The coefficient of variation (CV) of Hg was higher than 0.500, indicating significant spatial heterogeneity. Moreover, the correlation between Hg and other heavy metals was generally low, and the possibility of the same pollution source was small. The results of the geo-accumulation index and improved Nemerow pollution index showed that the overall soil heavy metal pollution was at a moderate level, among which the Hg pollution level was the highest, and its maximum value was at a slanted-heavy pollution level; Cu, Cd, and As in soil caused local pollution, which were at a slanted-light pollution level. Soil heavy metal pollution was closely related to mining activities, rehabilitation, and engineering construction in the coal mine area. The two major pollution sources of soil heavy metal in the research area were the compound source of the parent material and industrial and mining transportation sources (known source 1) and the compound source of atmospheric sedimentation and coal production (known source 2), the contribution rates of which were 76.705% and 16.171%, respectively. The results of the APCS-MLR model were shown to be reliable by analyzing the content distribution of Hg and Cd using the Kriging space difference mode. This research can provide scientific basis for the precise control and improvement of soil heavy metal pollution, ensuring the safety of food and agricultural products and improving the quality of the ecological environment in the coal mine area in the Shandong section of the Yellow River Basin.

2.
Sci Total Environ ; 925: 171656, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38490416

RESUMEN

Toxic metal(loid)s contamination of paddy soil is a nonnegligible issue and threatens food safety considering that it is transmitted via the soil-plant system. Applying remediation agents could effectively inhibit the soil available toxic metal(loid)s and reduce their accumulation in rice. To comprehensively quantify how remediation agents impact the accumulation of Cd/Pb/As in rice, rice growth and yield, the accumulation of available Cd/Pb/As in paddy soil, and soil characteristics, 50 peer-reviewed publications were selected for meta-analysis. Overall, the application of remediation agents exhibited significant positive effects on rice plant length (ES = 0.05, CI = 0.01-0.08), yield (ES = 0.20, CI = 0.13-0.27), peroxidase (ES = 0.56, CI = 0.18-0.31), photosynthetic rate (ES = 0.47, CI = 0.34-0.61), and respiration rate (ES = 0.68, CI = 0.47-0.88). Among the different types of remediation agents, biochar was the most effective in controlling the accumulation of Cd/Pb/As in all portions of rice, and was also superior in inhibiting the accumulation of Pb in rice grains (ES = -0.59, 95 % CI = -1.04-0.13). This study offers an essential contribution for the remediation strategies of toxic metal(loid)s contaminated paddy fields.


Asunto(s)
Oryza , Contaminantes del Suelo , Suelo , Cadmio/análisis , Plomo , Contaminantes del Suelo/análisis
3.
Environ Microbiome ; 19(1): 13, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429752

RESUMEN

Bathyarchaeia (formerly Bathyarchaeota) is a group of highly abundant archaeal communities that play important roles in global biogeochemical cycling. Bathyarchaeia is predominantly found in sediments and hot springs. However, their presence in arable soils is relatively limited. In this study, we aimed to investigate the spatial distributions and diversity of Bathyarchaeia in paddy soils across eastern China, which is a major rice production region. The relative abundance of Bathyarchaeia among total archaea ranged from 3 to 68% in paddy soils, and Bathy-6 was the dominant subgroup among the Bathyarchaeia (70-80% of all sequences). Bathyarchaeia showed higher migration ability and wider niche width based on the neutral and null model simulations. Bathy-6 was primarily assembled by deterministic processes. Soil pH and C/N ratio were identified as key factors influencing the Bathyarchaeia composition, whereas C/N ratio and mean annual temperature influenced the relative abundance of Bathyarchaeia. Network analysis showed that specific Bathyarchaeia taxa occupied keystone positions in the archaeal community and co-occurred with some methanogenic archaea, including Methanosarcina and Methanobacteria, and ammonia-oxidizing archaea belonging to Nitrososphaeria. This study provides important insights into the biogeography and niche differentiation of Bathyarchaeia particularly in paddy soil ecosystems.

4.
Environ Res ; 249: 118421, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38325790

RESUMEN

Root exudate is a major source of soil organic matter and can significantly affect arsenic (As) migration and transformation in paddy soils. Citric acid is the main component of rice root exudate, however, the impacts and rules of citric acid on As bioavailability and rhizobacteria in different soils remains unclear. This study investigated the effects of citric acid on As transformation and microbial community in ten different paddy soils by flooded soil culture experiments. The results showed that citric acid addition increased total As and arsenate (As(V)) in the soil porewater by up to 41-fold and 65-fold, respectively, after 2-h incubation. As(V) was the main As species in soil porewater within 10 days with the addition of citric acid. Non-specifically sorbed As of soils, total Fe and total As were the main environmental factors affecting the soil microbial communities. High-throughput sequencing analysis demonstrated that citric acid addition significantly altered the soil microbial community structure, shifting the Proteobacteria-related reducing bacteria to Firmicutes-related reducing bacteria in different paddy soils. The relative abundance of Firmicutes was promoted by 174-196%. Clostridium-related bacteria belonging to Firmicutes became the dominant genera, which is believed to regulate As release through the reductive dissolution of iron oxides or the direct reduction of As(V) to arsenite (As(III)). However, citric acid addition significantly decreased the relative abundance of Geobacter and Anaeromyxobacter, which are also typical active As(V)- and ferric-reducing bacteria. Real-time quantitative polymerase chain reaction (qPCR) also revealed that the addition of citric acid significantly decreased the relative abundances of Geobacter in the different soils by 8-28 times while the relative abundances of Clostridium increased by 2-5 times. These results provide significant insight on As transformation in different types of rice rhizospheric soils and guidance for the application of rice varieties with low citric acid exuding to restrict As accumulation.


Asunto(s)
Arsénico , Ácido Cítrico , Oryza , Microbiología del Suelo , Contaminantes del Suelo , Arsénico/análisis , Contaminantes del Suelo/análisis , Oryza/microbiología , Oryza/crecimiento & desarrollo , Microbiota/efectos de los fármacos , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/clasificación , Suelo/química
5.
Environ Int ; 185: 108496, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38359549

RESUMEN

Artificial sweeteners (AS) are extensively utilized as sugar substitutes and have been recognized as emerging environmental contaminants. While the effect of AS on aquatic organisms has garnered recent attention, their effects on soil invertebrates and gut microbial communities remain unclear. To address this knowledge gap, we exposed springtails (Folsomia candida) to both single and combined treatments of four typical AS (sucralose [SUC], saccharin [SAC], cyclamate [CYC], and acesulfame [ACE]) at environmentally relevant concentrations of 0.01, 0.1 and 1 mg kg-1 in soil. Following the first-generational exposure, the reproduction of juveniles showed a significant increase under all the AS treatments of 0.1 mg kg-1. The transcriptomic analysis revealed significant enrichment of several Kyoto Encyclopedia of Gene and Genome pathways (e.g., glycolysis/gluconeogenesis, pentose and glucuronate interconversions, amino sugar, and nucleotide sugar metabolism, ribosome, and lysosome) in springtails under all AS treatments. Analysis of gut bacterial microbiota indicated that three AS (SUC, CYC, and ACE) significantly decreased alpha diversity, and all AS treatments increased the abundance of the genus Achromobacter. After the sixth-generational exposure to CYC, weight increased, but reproduction was inhibited. The pathways that changed significantly (e.g., extracellular matrix-receptor interaction, amino sugar and nucleotide sugar metabolism, lysosome) were generally similar to those altered in first-generational exposure, but with opposite regulation directions. Furthermore, the effect on the alpha diversity of gut microbiota was contrary to that after first-generational exposure, and more noticeable disturbances in microbiota composition were observed. These findings underscore the ecological risk of AS in soils and improve our understanding of the toxicity effects of AS on living organisms.


Asunto(s)
Microbioma Gastrointestinal , Contaminantes Químicos del Agua , Edulcorantes/toxicidad , Edulcorantes/análisis , Edulcorantes/metabolismo , Suelo , Contaminantes Químicos del Agua/análisis , Ciclamatos/análisis , Amino Azúcares , Nucleótidos
6.
J Hazard Mater ; 466: 133567, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38271874

RESUMEN

Arsenic (As) and cadmium (Cd) pose potential ecological threats to cropland soils; however, few studies have investigated their combined effects on multilevel organisms and soil functioning. Here, we used collembolans and soil microbiota as test organisms to examine their responses to soil As and Cd co-contamination at the gene, individual, and community levels, respectively, and further uncovered ecological relationships between pollutants, multilevel organisms, and soil functioning. At the gene level, collembolan transcriptome revealed that elevated As concentrations stimulated As-detoxifying genes AS3MT and GST, whereas the concurrent Cd restrained GST gene expression. At the individual level, collembolan reproduction was sensitive to pollutants while collembolan survival wasn't. At the community level, significant but inconsistent correlations were observed between the biodiversity of different soil keystone microbial clusters and soil As levels. Moreover, soil functioning related to nutrient (e.g., carbon, nitrogen, phosphorus, and sulfur) cycles was inhibited under As and Cd co-exposure only through the mediation of plant pathogens. Overall, these findings suggested multilevel bioindicators (i.e., AS3MT gene expression in collembolans, collembolan reproduction, and biodiversity of soil keystone microbial clusters) in cropland soils co-contaminated with As and Cd, thus improving the understanding of the ecotoxicological impact of heavy metal co-contamination on soil ecosystems.


Asunto(s)
Arsénico , Contaminantes Ambientales , Microbiota , Contaminantes del Suelo , Cadmio/metabolismo , Arsénico/toxicidad , Arsénico/análisis , Suelo , Multiómica , Microbiota/genética , Contaminantes Ambientales/análisis , Productos Agrícolas/metabolismo , Reacción en Cadena de la Polimerasa , Contaminantes del Suelo/metabolismo
7.
Environ Pollut ; 342: 123010, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38012967

RESUMEN

Within human-influenced landscapes, pesticides cooccur with a variety of antibiotic stressors. However, the relationship between pesticides removal process and antibiotic resistance gene variation are not well understood. This study explored pesticide (topramezone, TPZ) and antibiotic (polymyxin E, PME) co-contamination using liquid chromatography-tandem mass spectrometry (LC-MS/MS), bacterial-16 S rRNA sequencing and high-throughput quantitative polymerase chain reaction (HT-qPCR) in a soil-earthworm-maize system. After incubating soil for 28 days with TPZ and PME (10 mg kg-1 dry weight), earthworm weight-gain, mortality rates, and maize plant weight-gain only differed slightly, but height-gain significantly decreased. PME significantly increased TPZ-removal in the soil. Accumulation of TPZ in earthworm's tissues may pose potential risks in the food chain. Combined pollution altered the microbial community structure and increased the abundance of functional microorganisms involved in aromatic compound degradation. Furthermore, maize rhizosphere can raise resistance genes, however earthworms can reduce resistance genes. Co-contamination increased absolute abundance of mobile genetic elements (MGEs) in bulk-soil samples, antibiotic resistance genes (ARGs) in skin samples and number of ARGs in bulk-soil samples, while decreased absolute abundance of transposase gene in bulk-soil samples and number of ARGs in rhizosphere-soil samples. Potential hosts harbouring ARGs may be associated with the antagonistic effect during resistance and detoxification of TPZ and PMB co-occurrence. These findings provide insights into the mechanism underlining pesticide removal regarding occurrence of ARGs in maize agroecosystem.


Asunto(s)
Oligoquetos , Plaguicidas , Animales , Humanos , Suelo/química , Genes Bacterianos , Oligoquetos/genética , Zea mays , Plaguicidas/análisis , Cromatografía Liquida , Microbiología del Suelo , Espectrometría de Masas en Tándem , Antibacterianos/análisis , Farmacorresistencia Microbiana/genética , Aumento de Peso
8.
J Hazard Mater ; 465: 133342, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38150755

RESUMEN

Whether Cr(III) in Cr(III)-containing sites formed after Cr(VI) reduction and stabilization remediation are re-oxidized and pose toxicity risks again has been a growing concern. In this study, 1030 data were collected to perform a meta-analysis to clarify the effects of various factors (oxidant type, soil and Cr(III) solid compound properties, aging conditions, and testing methods) on Cr(III) oxidation. We observed that the soil properties of clay, pH ≥ 8, the lower CEC capacity, easily reducible Mn content, and Cr(III) content, and the higher Eh value and Fe content can promote the re-oxidation of Cr(III). Publication bias and sensitivity analyses confirmed the stability and reliability of the meta-analysis. Subsequently, we used five machine learning algorithms to construct and optimize the models. The prediction results of the RF model (RMSE <1.36, R2 >0.71) with good algorithm performance showed that after ten years of remediation, the extractable Cr(VI) concentration in the soil was 0.0087 mg/L, indicating a negligible secondary pollution risk of Cr(III) re-oxidation. This study provides theoretical support for subsequent risk management and control after Cr(VI) soil remediation and provides a solution for the quantitative prediction of Cr(III) re-oxidation.

9.
Sci Total Environ ; 905: 167399, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37793443

RESUMEN

Hexavalent chromium (Cr(VI)) is carcinogenic and widely presented in soil. In this study, modified zero-valent iron (ZVI) with oxalic acid on biochar (OA-ZVI/BC) was prepared using wet ball milling method for the remediation of Cr(VI)-contaminated soil. Microscopic characterizations showed that ZVI were distributed on the biochar uniformly and confirmed the enhanced interface interaction between biochar and ZVI by wet ball milling. Electrochemical analysis indicated the strong electron transfer ability and enhanced corrosion behavior of OA-ZVI/BC. Moreover, inhibitory efficiencies of Cr(VI) removal with the addition of 1,10-phenanthroline suggested abundant Fe2+ generation in OA-ZVI/BC, which might facilitate the reduction of Cr(VI) to Cr(III). Theory calculation further demonstrated the ZVI modified by oxalic acid was more susceptible to solid-solid interfacial reactions with Cr(VI), and more electrons were transferred to Cr(VI). When applied to Cr(VI)-contaminated soil, OA-ZVI/BC could passivate 96.7 % total Cr(VI) and maintained for 90 days. The toxicity characteristic leaching procedure (TCLP) and simple based extraction test (SBET) were used to evaluate the leaching toxicity and bioaccessibility of Cr(VI), respectively. The TCLP-Cr(VI) decreased to 0.11 mg·L-1 after OA-ZVI/BC treatment, much lower than that of soils with ZVI/BC and OA-ZVI remediation (1.5 mg·L-1 and 4.1 mg·L-1). The bioaccessibility of Cr(VI) reduced by 93.5 % after 3-month remediation. Sequential extraction showed that Cr fractions in the soil after OA-ZVI/BC remediation was converted from acetic acid-extractable (HOAc-extractable) to more stable forms (e.g., residual and oxidizable forms). Benefiting from the synergies of oxalic acid, biochar and wet ball milling, OA-ZVI/BC exhibited an excellent performance on the remediation of Cr(VI)-contaminated soil, whose mechanisms involved adsorption, reduction (Fe0/Fe2+, Fe2+/Fe3+) and co-precipitation. This study herein develops a promising ZVI technology in the remediation of heavy metal-contaminated soil.

10.
Appl Microbiol Biotechnol ; 107(21): 6703-6716, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37676290

RESUMEN

The continuous obstacles of cropping cause severe economic loss, which seriously threaten agricultural sustainable development. In addition, managing excess waste, such as potato peel and mineral waste residues, is a vital burden for industry and agriculture. Therefore, we explored the feasibility of reductive soil disinfestation (RSD) with potato peel and amendment with iron mineral waste residues for the production of Fritillaria thunbergii, which is vulnerable to continuous obstacles. In this study, the influences of iron mineral, RSD with different organic maters, as well as the combined effects of iron mineral and RSD on Fritillaria rhizosphere soil physicochemical properties, microbial communities, and Fritillaria production were investigated. The results revealed that the RSD treatments with potato peel significantly reduced the soil salinity and increased the soil pH, microbial activity, organic matter, and the contents of K and Ca. RSD with potato peel also significantly thrived of the beneficial microbes (Bacillus, Azotobacter, Microvirga, and Chaetomium), and down-regulated potential plant pathogens. RSD with potato peel significantly promoted F. thunbergii yield and quality. Moreover, the combined effects of RSD and iron mineral amendment further enhanced soil health, improved microbial community composition, and increased the yield and peimisine content of F. thunbergii by 24.2% and 49.3%, respectively. Overall, our results demonstrated that RSD with potato peel and amendment with iron mineral waste residues can efficiently improve soil fertility, modify the microbial community, and benefit for both the sustainable production of F. thunbergii and the management of waste. KEY POINTS: • RSD increases soil pH, organic matter, microbial activity, and mineral content • RSD with potato peel enriches beneficial microbes and decreases plant pathogens • PP + Fe treatment increases Fritillaria yield by 24.2% and peimisine content by 49.3.

11.
J Environ Sci (China) ; 133: 37-47, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37451787

RESUMEN

Polymyxin B (PMB) has received widespread attention for its use as a last-line therapy against multidrug-resistant bacterial infection. However, the consequences of unintended PMB exposure on organisms in the surrounding environment remain inconclusive. Therefore, this study investigated the effects of soil PMB residue on the gut microbiota and transcriptome of earthworms (Metaphire guillelmi). The results indicated that the tested doses of PMB (0.01-100 mg/kg soil) did not significantly affect the richness and Shannon's diversity index of the earthworm gut microbiota, but PMB altered its community structure and taxonomic composition. Moreover, PMB significantly affected Lysobacter, Aeromonas, and Sphingomonas in the soil microbiota, whereas Pseudomonas was significantly impacted the earthworm gut microbiota. Furthermore, active bacteria responded more significantly to PMB than the total microbial community. Bacterial genera such as Acinetobacter and Bacillus were highly correlated with differential expression of some genes, including up-regulated genes associated with folate biosynthesis, sulphur metabolism, and the IL-17 signalling pathway, and downregulated genes involved in vitamin digestion and absorption, salivary secretion, other types of O-glycan biosynthesis, and the NOD-like receptor signalling pathway. These results suggest that adaptation to PMB stress by earthworms involves changes in energy metabolism, their immune and digestive systems, as well as glycan biosynthesis. The study findings help elucidate the relationship between earthworms and their microbiota, while providing a reference for understanding the environmental risks of PMB.


Asunto(s)
Microbioma Gastrointestinal , Oligoquetos , Contaminantes del Suelo , Animales , Polimixina B , Oligoquetos/fisiología , Transcriptoma , Contaminantes del Suelo/análisis , Bacterias/metabolismo , Suelo/química , Polisacáridos/metabolismo
12.
Environ Sci Technol ; 57(30): 10919-10928, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37475130

RESUMEN

Artificial sweeteners have been frequently detected in the feedstocks of anaerobic digestion. As these sweeteners can lead to the shift of anaerobic microbiota in the gut similar to that caused by antibiotics, we hypothesize that they may have an antibiotic-like impact on antibiotic resistance genes (ARGs) in anaerobic digestion. However, current understanding on this topic is scarce. This investigation aimed to examine the potential impact of acesulfame, a typical artificial sweetener, on ARGs in anaerobic digestion by using metagenomics sequencing and qPCR. It was found that acesulfame increased the number of detected ARG classes and the abundance of ARGs during anaerobic digestion. The abundance of typical mobile genetic elements (MGEs) and the number of potential hosts of ARGs also increased under acesulfame exposure, suggesting the enhanced potential of horizontal gene transfer of ARGs, which was further confirmed by the correlation analysis between absolute abundances of the targeted ARGs and MGEs. The increased horizontal dissemination of ARGs may be associated with the SOS response induced by the increased ROS production, and the increased cellular membrane permeability. These findings indicate that artificial sweeteners may accelerate ARG spread through digestate disposal, thus corresponding strategies should be considered to prevent potential risks in practice.


Asunto(s)
Antibacterianos , Microbioma Gastrointestinal , Edulcorantes , Edulcorantes/farmacología , Farmacorresistencia Microbiana/efectos de los fármacos , Farmacorresistencia Microbiana/genética , Anaerobiosis/efectos de los fármacos , Genes Bacterianos , Microbioma Gastrointestinal/efectos de los fármacos , Antibacterianos/farmacología
13.
mSystems ; 8(3): e0014323, 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37246882

RESUMEN

Bathyarchaeota, known as key participants of global elements cycling, is highly abundant and diverse in the sedimentary environments. Bathyarchaeota has been the research spotlight on sedimentary microbiology; however, its distribution in arable soils is far from understanding. Paddy soil is a habitat similar to freshwater sediments, while the distribution and composition of Bathyarchaeota in paddy soils have largely been overlooked. In this study, we collected 342 in situ paddy soil sequencing data worldwide to illuminate the distribution patterns of Bathyarchaeota and explore their potential ecological functions in paddy soils. The results showed that Bathyarchaeota is the dominant archaeal lineage, and Bathy-6 is the most predominant subgroup in paddy soils. Based on random forest analysis and construction of a multivariate regression tree, the mean annual precipitation and mean annual temperature are identified as the factors significantly influencing the abundance and composition of Bathyarchaeota in paddy soils. Bathy-6 was abundant in temperate environments, while other subgroups were more abundant in sites with higher rainfall. There are highly frequent associations between Bathyarchaeota and methanogens and ammonia-oxidizing archaea. The interactions between Bathyarchaeota and microorganisms involved in carbon and nitrogen metabolism imply a potential syntrophy between these microorganisms, suggesting that members of Bathyarchaeota could be important participants of geochemical cycle in paddy soils. These results shed light on the ecological lifestyle of Bathyarchaeota in paddy soils, and provide some baseline for further understanding Bathyarchaeota in arable soils. IMPORTANCE Bathyarchaeota, the dominant archaeal lineage in sedimentary environments, has been the spotlight of microbial research due to its vital role in carbon cycling. Although Bathyarchaeota has been also detected in paddy soils worldwide, its distribution in this environment has not yet been investigated. In this study, we conducted a global scale meta-analysis and found that Bathyarchaeota is also the dominant archaeal lineage in paddy soils with significant regional abundance differences. Bathy-6 is the most predominant subgroup in paddy soils, which differs from sediments. Furthermore, Bathyarchaeota are highly associated with methanogens and ammonia-oxidizing archaea, suggesting that they may be involved in the carbon and nitrogen cycle in paddy soil. These interactions provide insight into the ecological functions of Bathyarchaeota in paddy soils, which will be the foundation of future studies regarding the geochemical cycle in arable soils and global climate change.


Asunto(s)
Euryarchaeota , Suelo , Humanos , Suelo/química , Amoníaco/metabolismo , Archaea/metabolismo , Ambiente , Euryarchaeota/metabolismo , Carbono/metabolismo
14.
Bioresour Technol ; 380: 129080, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37094620

RESUMEN

Cu is widely present in the feedstocks of dark fermentation, which can inhibit H2 production efficiency of the process. However, current understanding on the inhibitory mechanisms of Cu, especially the microbiological mechanism, is still lacking. This study investigated the inhibitory mechanisms of Cu2+ on fermentative hydrogen production by metagenomics sequencing. Results showed that the exposure to Cu2+ reduced the abundances of high-yielding hydrogen-producing genera (e.g. Clostridium sensu stricto), and remarkably down-regulated the genes involved in substrate membrane transport (e.g., gtsA, gtsB and gtsC), glycolysis (e.g. PK, ppgK and pgi-pmi), and hydrogen formation (e.g. pflA, fdoG, por and E1.12.7.2), leading to significant inhibition on the process performances. The H2 yield was reduced from 1.49 mol H2/mol-glucose to 0.59 and 0.05 mol H2/mol-glucose upon exposure to 500 and 1000 mg/L of Cu2+, respectively. High concentrations of Cu2+ also reduced the rate of H2 production and prolonged the H2-producing lag phase.


Asunto(s)
Reactores Biológicos , Metagenómica , Fermentación , Reactores Biológicos/microbiología , Hidrógeno , Glucosa
15.
Front Microbiol ; 14: 1065302, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36992926

RESUMEN

Introduction: The microbiome inhabiting plant leaves is critical for plant health and productivity. Wild soybean (Glycine soja), which originated in China, is the progenitor of cultivated soybean (Glycine max). So far, the community structure and assembly mechanism of phyllosphere microbial community on G. soja were poorly understood. Methods: Here, we combined a national-scale survey with high-throughput sequencing and microsatellite data to evaluate the contribution of host genotype vs. climate in explaining the foliar microbiome of G. soja, and the core foliar microbiota of G. soja were identified. Results: Our findings revealed that both the host genotype and environmental factors (i.e., geographic location and climatic conditions) were important factors regulating foliar community assembly of G. soja. Host genotypes explained 0.4% and 3.6% variations of the foliar bacterial and fungal community composition, respectively, while environmental factors explained 25.8% and 19.9% variations, respectively. We further identified a core microbiome thriving on the foliage of all G. soja populations, including bacterial (dominated by Methylobacterium-Methylorubrum, Pantoea, Quadrisphaera, Pseudomonas, and Sphingomonas) and fungal (dominated by Cladosporium, Alternaria, and Penicillium) taxa. Conclusion: Our study revealed the significant role of host genetic distance as a driver of the foliar microbiome of the wild progenitor of soya, as well as the effects of climatic changes on foliar microbiomes. These findings would increase our knowledge of assembly mechanisms in the phyllosphere of wild soybeans and suggest the potential to manage the phyllosphere of soya plantations by plant breeding and selecting specific genotypes under climate change.

16.
Environ Pollut ; 325: 121431, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36914151

RESUMEN

Arsenic (As) is extremely harmful to the ecological environment and human health owing to its high toxicity. The composite that biochar (BC) modified by Schwertmannite (Sch), marked as Sch@BC, were prepared to remediate As-contaminated water and soil with a high efficiency. The characterization results showed that the Sch particles were successfully loaded on the BC, providing more active sites for As(V) adsorption. Compared with the pristine BC, the adsorption capacity of Sch@BC-1 was significantly improved (50.00 mg/g), of which the adsorption capacity kept stable over a wide pH range (pH = 2-8). The adsorption process conformed to pseudo-second-order kinetics and Langmuir isotherm model, which indicated that chemical adsorption was the dominant mechanism and the adsorption rate was controlled by intraparticle diffusion. Sch@BC could adsorb As(V) through electrostatic interaction and ion exchange, forming a FeAsO4 complex and removing As(V). The 5-week soil incubation experiment showed that 3% Sch@BC showed the optimal stabilization effect, while the proportion of stable crystalline Fe/Mn-bound fractionation (F4) increased. Moreover, the results of microbial community diversity showed that Sch@BC interacted with As-resistant dominant microorganisms such as Proteobacteria in soil, promoted their growth and reproduction, and improved the stability of As in soil. In summary, Sch@BC is an excellent agent with broad application prospects for remediating As-contaminated water and soil.


Asunto(s)
Arsénico , Contaminantes Químicos del Agua , Humanos , Agua , Arsénico/análisis , Suelo , Sulfatos , Carbón Orgánico/química , Óxidos de Azufre , Adsorción , Contaminantes Químicos del Agua/análisis , Cinética
17.
Bioresour Technol ; 376: 128889, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36931450

RESUMEN

Phthalates are common pollutants in agriculture. Here, the influence of di-n-butyl phthalate (DBP) on multifunctionality of composting was assessed. Results indicated that DBP stress (100 mg/kg) hampered multifunctionality from the thermophilic phase onwards and resulted in a 6.5 % reduction of all assessed functions. DBP stress also significantly reduced microbial biomass (P < 0.05), altered microbial composition (P < 0.05), and decreased network complexity (P < 0.01). Multifunctionality was found to be strongly correlated (P < 0.001) with microbial biomass, diversity, and network complexity. In addition, keystone taxa responsive to DBP were identified as Streptomyces, Thermoactinomyces, Mycothermus, and Lutispora. These taxa were significantly (P < 0.001) affected by DBP stress, and a correlation between them and multifunctionality was shown. This study contributes to a better understanding of the negative implications of phthalates during composting processes, which is of great significance to the development of new treatment strategies for agricultural waste.


Asunto(s)
Compostaje , Ácidos Ftálicos , Dibutil Ftalato , Biomasa
18.
Sci Total Environ ; 871: 162034, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36754316

RESUMEN

Biodegradable mulch films are widely used to replace conventional plastic films in agricultural fields. However, their ecological effects on different microbial communities that naturally inhabit agricultural fields are scarcely explored. Herein, differences in bacterial communities recovered from biofilms, bulk soil, and rhizosphere soil were comparatively assessed for polyethylene film (PE) and biodegradable mulch film (BDM) application in peanut planted fields. The results showed that the plastic film type significantly influenced the bacterial community in different ecological niches of agricultural fields (P < 0.001). Specifically, BDMs significantly increased the diversity and abundance of bacteria in the rhizosphere soil. The bacterial communities in each ecological niche were distinguishable from each other; bacterial communities in the rhizosphere soil showed the most pronounced response among different treatments. Acidobacteria and Pseudomonas were significantly enriched in the rhizosphere soil when BDMs were used. BDMs also increased the rhizosphere soil bacterial network complexity and stability. The enrichment of beneficial bacteria in the rhizosphere soil under BDMs may also have implications for the observed increase in peanut yield. Deepening analyses indicated that Pseudoxanthomonas and Glutamicibacter are biomarkers in biofilms of PE and BDMs respectively. Our study provides new insights into the consequences of the application of different types of plastic films on microbial communities in different ecological niches of agricultural fields.


Asunto(s)
Arachis , Microbiota , Rizosfera , Bacterias , Suelo , Plásticos , Microbiología del Suelo
19.
Microbiol Spectr ; 11(1): e0437122, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36625666

RESUMEN

Wild rice has been demonstrated to possess enriched genetic diversity and multiple valuable traits involved in disease/pest resistance and abiotic stress tolerance, which provides a potential resource for sustainable agriculture. However, unlike the plant compartments such as rhizosphere, the structure and assembly of phyllosphere microbial communities of wild rice remain largely unexplored. Through amplicon sequencing, this study compared the phyllosphere bacterial and fungal communities of wild rice and its neighboring cultivated rice. The core phyllosphere microbial taxa of both wild and cultivated rice are dominated with Pantoea, Methylobacterium, Nigrospora, and Papiliotrema, which are potentially beneficial to rice growth and health. Compared to the cultivated rice, Methylobacterium, Sphingomonas, Phaeosphaeria, and Khuskia were significantly enriched in the wild rice phyllosphere. The potentially nitrogen-fixing Methylobacterium is the dominated wild-enriched microbe; Sphingomonas is the hub taxon of wild rice networks. In addition, the microbiota of wild rice was more governed by deterministic assembly with a more complicated and stable community network than the cultivated rice. Our study provides a list of the beneficial microbes in the wild rice phyllosphere and reveals the microbial divergence between wild rice and cultivated rice in the original habitats, which highlights the potential selective role of wild rice in recruiting specific microbiomes for enhancing crop performance and promoting sustainable food production. IMPORTANCE Plant microbiota are being considered a lever to increase the sustainability of food production under a changing climate. In particular, the microbiomes associated with ancestors of modern cultivars have the potential to support their domesticated cultivars. However, few efforts have been devoted to studying the biodiversity and functions of microbial communities in the native habitats of ancestors of modern crop species. This study provides a list of the beneficial microbes in the wild rice phyllosphere and explores the microbial interaction patterns and the functional profiles of wild rice. This information could be useful for the future utilization of the plant microbiome to enhance crop performance and sustainability, especially in the framework of sustainable agroecosystems.


Asunto(s)
Basidiomycota , Microbiota , Micobioma , Oryza , Oryza/microbiología , Bacterias/genética
20.
J Environ Sci (China) ; 127: 410-420, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36522072

RESUMEN

Root exudates are crucial for plants returning organic matter to soils, which is assumed to be a major source of carbon for the soil microbial community. This study investigated the influence of root exudates on the fate of arsenic (As) with a lab simulation experiment. Our findings suggested that root exudates had a dose effect on the soil physicochemical properties, As speciation transformation and the microbial community structure at different concentrations. The addition of root exudates increased the soil pH while decreased the soil redox potential (Eh). These changes in the soil pH and Eh increased As and ferrous (Fe(II)) concentrations in soil porewater. Results showed that 40 mg/L exudates addition significantly increased arsenite (As(III)) and arsenate (As(V)) by 541 and 10 times respectively within 30 days in soil porewater. The relative abundance of Fe(III)-reducing bacteria Geobacter and Anaeromyxobacter increased with the addition of root exudates, which enhanced microbial Fe reduction. Together these results suggest that investigating how root exudates affect the mobility and transformation of As in paddy soils is helpful to systematically understand the biogeochemical cycle of As in soil-rice system, which is of great significance for reducing the health risk of soil As contamination.


Asunto(s)
Arsénico , Microbiota , Oryza , Contaminantes del Suelo , Arsénico/análisis , Suelo/química , Contaminantes del Suelo/análisis , Hierro/química , Oxidación-Reducción , Oryza/química , Exudados y Transudados/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA