Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167043, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38320662

RESUMEN

Mitochondrial encephalopathy is a neurological disorder caused by impaired mitochondrial function and energy production. One of the genetic causes of this condition is the mutation of MT-TN, a gene that encodes the mitochondrial transfer RNA (tRNA) for asparagine. MT-TN mutations affect the stability and structure of the tRNA, resulting in reduced protein synthesis and complex enzymatic deficiency of the mitochondrial respiratory chain. Our patient cohort manifests with epileptic encephalopathy, ataxia, hypotonia, and bilateral basal ganglia calcification, which differs from previously reported cases. MT-TN mutation deficiency leads to decreased basal and maximal oxygen consumption rates, disrupted spare respiratory capacity, declined mitochondrial membrane potential, and impaired ATP production. Moreover, MT-TN mutations promote mitophagy, a process of selective degradation of damaged mitochondria by autophagy. Excessive mitophagy further leads to mitochondrial biogensis as a compensatory mechanism. In this study, we provided evidence of pathogenicity for two MT-TN mutations, m.5688 T > C and m.G5691A, explored the molecular mechanisms, and summarized the clinical manifestations of MT-TN mutations. Our study expanded the genotype and phenotypic spectrum and provided new insight into mt-tRNA (Asn)-associated mitochondrial encephalopathy.


Asunto(s)
Encefalopatías , Encefalomiopatías Mitocondriales , Mitofagia , Humanos , Mitofagia/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Mutación , Encefalopatías/genética , Encefalopatías/metabolismo , ARN de Transferencia/genética , ARN Mitocondrial/metabolismo
2.
Gene ; 897: 148071, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38081334

RESUMEN

With the continuous deepening of genetic research on neurodevelopmental disorders (NDDs), more patients have been identified the causal or candidate genes. However, it is still urgent needed to increase the sample size to confirm the associations between variants and clinical manifestations. We previously performed molecular inversion probe sequencing of autism spectrum disorder (ASD) candidate genes in 1543 ASD patients. In this study, we used the same method to detect de novo variants (DNVs) in 665 NDD patients with intellectual disability (ID) and/or epilepsy (EP) for genetic analysis and diagnosis. We compared findings from ID/EP and ASD patients to improve our understanding of different subgroups of NDDs. We identified 72 novel variants and 39 DNVs. A totally of 5.71 % (38/665) of the patients were genetically diagnosed by this sequencing strategy. ID/EP patients demonstrated a higher prevalence of likely gene disruptive DNVs in ASD genes than the healthy population. Regarding high-risk genes, SCN1A and CKDL5 were more frequently mutated in ID/EP patients than in ASD patients. Our data provide an overview of the mutation burden in ID/EP patients from the perspective of high risk ASD genes, indicating the differences and association of NDDs subgroups.


Asunto(s)
Trastorno del Espectro Autista , Epilepsia , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Humanos , Trastorno del Espectro Autista/genética , Trastornos del Neurodesarrollo/genética , Discapacidad Intelectual/genética , Epilepsia/genética , Predisposición Genética a la Enfermedad
3.
Front Mol Neurosci ; 15: 925049, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36211978

RESUMEN

Background: Attention-deficit/hyperactive disorder (ADHD) is a neurodevelopmental disorder that commonly occurs in children with a prevalence ranging from 3.4 to 7.2%. It profoundly affects academic achievement, well-being, and social interactions. As a result, this disorder is of high cost to both individuals and society. Despite the availability of knowledge regarding the mechanisms of ADHD, the pathogenesis is not clear, hence, the existence of many challenges especially in making correct early diagnosis and provision of accurate management. Objectives: We aimed to review the pathogenic pathways of ADHD in children. The major focus was to provide an update on the reported etiologies in humans, animal models, modulators, therapies, mechanisms, epigenetic changes, and the interaction between genetic and environmental factors. Methods: References for this review were identified through a systematic search in PubMed by using special keywords for all years until January 2022. Results: Several genes have been reported to associate with ADHD: DRD1, DRD2, DRD4, DAT1, TPH2, HTR1A, HTR1B, SLC6A4, HTR2A, DBH, NET1, ADRA2A, ADRA2C, CHRNA4, CHRNA7, GAD1, GRM1, GRM5, GRM7, GRM8, TARBP1, ADGRL3, FGF1, MAOA, BDNF, SNAP25, STX1A, ATXN7, and SORCS2. Some of these genes have evidence both from human beings and animal models, while others have evidence in either humans or animal models only. Notably, most of these animal models are knockout and do not generate the genetic alteration of the patients. Besides, some of the gene polymorphisms reported differ according to the ethnic groups. The majority of the available animal models are related to the dopaminergic pathway. Epigenetic changes including SUMOylation, methylation, and acetylation have been reported in genes related to the dopaminergic pathway. Conclusion: The dopaminergic pathway remains to be crucial in the pathogenesis of ADHD. It can be affected by environmental factors and other pathways. Nevertheless, it is still unclear how environmental factors relate to all neurotransmitter pathways; thus, more studies are needed. Although several genes have been related to ADHD, there are few animal model studies on the majority of the genes, and they do not generate the genetic alteration of the patients. More animal models and epigenetic studies are required.

4.
Front Mol Neurosci ; 15: 807202, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35663267

RESUMEN

Background: Hyperpolarization-activated cyclic nucleotide-gated (HCN) current reduces dendritic summation, suppresses dendritic calcium spikes, and enables inhibitory GABA-mediated postsynaptic potentials, thereby suppressing epilepsy. However, it is unclear whether increased HCN current can produce epilepsy. We hypothesized that gain-of-function (GOF) and loss-of-function (LOF) variants of HCN channel genes may cause epilepsy. Objectives: This systematic review aims to summarize the role of HCN channelopathies in epilepsy, update genetic findings in patients, create genotype-phenotype correlations, and discuss animal models, GOF and LOF mechanisms, and potential treatment targets. Methods: The review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement, for all years until August 2021. Results: We identified pathogenic variants of HCN1 (n = 24), HCN2 (n = 8), HCN3 (n = 2), and HCN4 (n = 6) that were associated with epilepsy in 74 cases (43 HCN1, 20 HCN2, 2 HCN3, and 9 HCN4). Epilepsy was associated with GOF and LOF variants, and the mechanisms were indeterminate. Less than half of the cases became seizure-free and some developed drug-resistant epilepsy. Of the 74 cases, 12 (16.2%) died, comprising HCN1 (n = 4), HCN2 (n = 2), HCN3 (n = 2), and HCN4 (n = 4). Of the deceased cases, 10 (83%) had a sudden unexpected death in epilepsy (SUDEP) and 2 (16.7%) due to cardiopulmonary failure. SUDEP affected more adults (n = 10) than children (n = 2). HCN1 variants p.M234R, p.C329S, p.V414M, p.M153I, and p.M305L, as well as HCN2 variants p.S632W and delPPP (p.719-721), were associated with different phenotypes. HCN1 p.L157V and HCN4 p.R550C were associated with genetic generalized epilepsy. There are several HCN animal models, pharmacological targets, and modulators, but precise drugs have not been developed. Currently, there are no HCN channel openers. Conclusion: We recommend clinicians to include HCN genes in epilepsy gene panels. Researchers should explore the possible underlying mechanisms for GOF and LOF variants by identifying the specific neuronal subtypes and neuroanatomical locations of each identified pathogenic variant. Researchers should identify specific HCN channel openers and blockers with high binding affinity. Such information will give clarity to the involvement of HCN channelopathies in epilepsy and provide the opportunity to develop targeted treatments.

5.
BMC Med Genomics ; 14(1): 182, 2021 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-34243774

RESUMEN

BACKGROUND: SYN1 encodes synapsin I, which is a neuronal phosphoprotein involving in regulating axonogenesis and synaptogenesis. Variants in the gene have been associated with X-linked neurodevelopmental disorders in recent years. METHODS: In the study, we reported two male patients with familial SYN1 variants related neurodevelopmental disorders from Asian population. Previously published cases with significant SYN1 variants from the literature were also included to analyze the phenotype and genotype of the disorder. RESULTS: Two maternally inherited SYN1 variants, including c.C1076A, p.T359K in proband A and c.C1444T, p. Q482X in proband B (NM_133499) were found, which have never been described in detail. Combining with our research, all reported probands were male in the condition, whose significant SYN1 variants were inherited from their asymptomatic or mild affected mother. Although the disorder encompasses three main clinical presentations: mental deficiency, easily controlled reflex seizure and behavior problems, patients' clinical manifestations vary in genders and individuals, even in the same pedigree. CONCLUSION: We firstly reported two familial SYN1-related neurodevelopmental disorders in Asian pediatric patients. Gender and phenotype differences should be highly valued in the disorder.


Asunto(s)
Trastornos del Neurodesarrollo
6.
Front Pediatr ; 9: 755344, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35071126

RESUMEN

Objective: Vitro functional analyses of KCNB1 variants have been done to disclose possible pathogenic mechanisms in KCNB1-related neurodevelopmental disorder. "Complete or partial loss of function (LoF)," "dominant-negative (DN) effect" are applied to describe KCNB1 variant's molecular phenotypes. The study here aimed to investigate clinical presentations and variant effects associations in the disorder. Methods: We reported 10 Chinese pediatric patients with KCNB1-related neurodevelopmental disorder here. Functional experiments on newly reported variants, including electrophysiology and protein expression, were performed in vitro. Phenotypic, functional, and genetic data in the cohort and published literature were collected. According to their variants' molecular phenotypes, patients were grouped into complete or partial LoF, and DN effect or non-dominant-negative (non-DN) effect to compare their clinical features. Results: Nine causative KCNB1 variants in 10 patients were identified in the cohort, including eight novel and one reported. Epilepsy (9/10), global developmental delay (10/10), and behavior issues (7/10) were common clinical features in our patients. Functional analyses of 8 novel variants indicated three partial and five complete LoF variants, five DN and three non-DN effect variants. Patient 1 in our series with truncated variants, whose functional results supported haploinsufficiency, had the best prognosis. Cases in complete LoF group had earlier seizure onset age (64.3 vs. 16.7%, p = 0.01) and worse seizure outcomes (18.8 vs. 66.7%, p = 0.03), and patients in DN effect subgroup had multiple seizure types compared to those in non-DN effect subgroup (65.5 vs. 30.8%, p = 0.039). Conclusion: Patients with KCNB1 variants in the Asian cohort have similar clinical manifestations to those of other races. Truncated KCNB1 variants exhibiting with haploinsufficiency molecular phenotype are linked to milder phenotypes. Individuals with complete LoF and DN effect KCNB1 variants have more severe seizure attacks than the other two subgroups.

7.
Zhongguo Dang Dai Er Ke Za Zhi ; 21(8): 754-760, 2019 Aug.
Artículo en Chino | MEDLINE | ID: mdl-31416498

RESUMEN

Hereditary angiopathy with nephropathy, aneurysms and muscle cramps (HANAC) syndrome is an autosomal dominant genetic disease caused by COL4A1 gene mutation, with major clinical manifestations of white matter lesion, aneurysm, retinal artery tortuosity, polycystic kidney, microscopic hematuria and muscle cramps. This article reports the clinical features and genotype of one toddler with HANAC syndrome caused by COL4A1 gene mutation. The boy, aged 1 year and 8 months, had an insidious onset, with the clinical manifestations of pyrexia and convulsion, white matter lesions in the periventricular region and the centrum semiovale on both sides, softening lesions beside the left basal ganglia, retinal arteriosclerosis, microscopic hematuria and muscle cramps. Whole exome sequencing revealed a pathogenic de novo heterozygous mutation in the COL4A1 gene, (NM_001845) c.4150+1(IVS46)G>T, and therefore, the boy was diagnosed with HANAC syndrome. COL4A1 gene mutation detection should be performed for children with unexplained white matter lesion, stroke, hematuria, polycystic kidney, cataract and retinal artery tortuosity or families with related history.


Asunto(s)
Aneurisma , Colágeno Tipo IV/genética , Calambre Muscular , Genotipo , Humanos , Lactante , Masculino , Calambre Muscular/genética , Mutación , Síndrome
8.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 44(11): 1230-1237, 2019 Nov 28.
Artículo en Chino | MEDLINE | ID: mdl-31919317

RESUMEN

OBJECTIVE: To investigate the effects of ventricular shunt placement in children with post-infective hydrocephalus.
 Methods: A total of 24 cases of post-infectious hydrocephalus, who received ventricular shunt, were enrolled. Age, gender, disease progression, clinical manifestation, laboratory data, treatment, prognosis, complication, and sequela for each patient were retrospectively reviewed.
 Results: Of the 24 cases, 8 had a full recovery, 11 had slight sequela, 2 had severe sequela, 1 was in vegetative state, and 2 died because of bacterial meningitis and tubercular meningitis. Epilepsy, mental impairment, visual and hearing damage were the main sequelae.
 Conclusion: Ventricular shunt is the preferred treatment in children with post-infective hydrocephalus, which shows positive clinical efficacy and can improve the long-term prognosis of such patients.


Asunto(s)
Hidrocefalia , Tuberculosis Meníngea , Niño , Humanos , Estudios Retrospectivos , Resultado del Tratamiento , Derivación Ventriculoperitoneal
9.
Front Neurol ; 9: 947, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30510536

RESUMEN

Introduction: The concurrence of intellectual disability/global developmental delay and epilepsy (ID/GDD-EP) is very common in the pediatric population. The etiologies for both conditions are complex and largely unknown. The predictors of significant copy number variations (CNVs) are known for the cases with ID/GDD, but unknown for those with exclusive ID/GDD-EP. Importantly, the known predictors are largely from the same ethnic group; hence, they lack replication. Purpose: We aimed to determine and investigate the diagnostic yield of CNV tests, new causative CNVs, and the independent predictors of significant CNVs in Chinese children with unexplained ID/GDD-EP. Materials and methods: A total of 100 pediatric patients with unexplained ID/GDD-EP and 1,000 healthy controls were recruited. The American College of Medical Genetics guideline was used to classify the CNVs. Additionally, clinical information was collected and compared between those with significant and non-significant CNVs. Results: Twenty-eight percent of the patients had significant CNVs, 16% had variants of unknown significance, and 56% had non-significant CNVs. In total, 31 CNVs were identified in 28% (28/100) of cases: 25 pathogenic and 6 likely pathogenic. Eighteen known syndromes were diagnosed in 17 cases. Thirteen rare CNVs (8 novel and 5 reported in literature) were identified, of which three spanned dosage-sensitive genes: 19q13.2 deletion (ATP1A3), Xp11.4-p11.3 deletion (CASK), and 6q25.3-q25.3 deletion (ARID1B). By comparing clinical features in patients with significant CNVs against those with non-significant CNVs, a statistically significant association was found between the presence of significant CNVs and speech and language delay for those aged above 2 years and for those with facial malformations, microcephaly, congenital heart disease, fair skin, eye malformations, and mega cisterna magna. Multivariate logistic regression analysis allowed the identification of two independent significant CNV predictors, which are eye malformations and facial malformations. Conclusion: Our study supports the performance of CNV tests in pediatric patients with unexplained ID/GDD-EP, as there is high diagnostic yield, which informs genetic counseling. It adds 13 rare CNVs (8 novel), which can be accountable for both conditions. Moreover, congenital eye and facial malformations are clinical markers that can aid clinicians to understand which patients can benefit from the CNV testing and which will not, thus helping patients to avoid unnecessary and expensive tests.

10.
Child Neurol Open ; 5: 2329048X18798200, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30263904

RESUMEN

1q43q44 microdeletion syndrome is characterized by intellectual disability/global developmental delay, epilepsy, dysmorphic facies, stereotypic movement, language delay, recurrent infections, dental anomalies, and hand and foot anomalies. Microcephaly and corpus callosum dysplasia are present in some cases depending on gene content. 3q29 microduplication syndrome is characterized by intellectual disability, language delay, microcephaly, and dental anomalies. We report the first case with 4 de novo copy number variations with clinical features which overlap 1q43q44 microdeletion and 3q29 microduplication syndromes. Our case presented with global developmental delay, epilepsy, recurrent infections, stereotypic movements, speech delay, microcephaly, facial dysmorphism, bilateral clinodactyly, and small puffy feet with metatarsus varus; however, she had no corpus callosum dysplasia. Our case highlights the role of multiple copy number variations in the occurrence of a certain phenotype. Moreover, it supports the theory that the loss of HNRNPU gene function cannot explain the occurrence of microcephaly and abnormalities of the corpus callosum in 1q43q44 microdeletion syndrome.

11.
BMC Genet ; 19(1): 40, 2018 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-29976148

RESUMEN

BACKGROUND: Electrical status epilepticus during slow-wave sleep (ESESS) which is also known as continuous spike-wave of slow sleep (CSWSS) is type of electroencephalographic (EEG) pattern which is seen in ESESS/CSWSS/epilepsy aphasia spectrum. This EEG pattern can occur alone or with other syndromes. Its etiology is not clear, however, brain malformations, immune disorders, and genetic etiologies are suspected to contribute. We aimed to perform a systematic review of all genetic etiologies which have been reported to associate with ESESS/CSWSS/epilepsy-aphasia spectrum. We further aimed to identify the common underlying pathway which can explain it. To our knowledge, there is no available systematic review of genetic etiologies of ESESS/CSWSS/epilepsy-aphasia spectrum. MEDLINE, EMBASE, PubMed and Cochrane review database were searched, using terms specific to electrical status epilepticus during sleep or continuous spike-wave discharges during slow sleep or epilepsy-aphasia spectrum and of studies of genetic etiologies. These included monogenic mutations and copy number variations (CNVs). For each suspected dosage-sensitive gene, further studies were performed through OMIM and PubMed database. RESULTS: Twenty-six studies out of the 136 identified studies satisfied our inclusion criteria. I51 cases were identified among those 26 studies. 16 studies reported 11 monogenic mutations: SCN2A (N = 6), NHE6/SLC9A6 (N = 1), DRPLA/ ATN1 (N = 1), Neuroserpin/SRPX2 (N = 1), OPA3 (N = 1), KCNQ2 (N = 2), KCNA2 (N = 5), GRIN2A (N = 34), CNKSR2 (N = 2), SLC6A1 (N = 2) and KCNB1 (N = 5). 10 studies reported 89 CNVs including 9 recurrent ones: Xp22.12 deletion encompassing CNKSR2 (N = 6), 16p13 deletion encompassing GRIN2A (N = 4), 15q11.2-13.1 duplication (N = 15), 3q29 duplication (N = 11), 11p13 duplication (N = 2), 10q21.3 deletion (N = 2), 3q25 deletion (N = 2), 8p23.3 deletion (N = 2) and 9p24.2 (N = 2). 68 of the reported genetic etiologies including monogenic mutations and CNVs were detected in patients with ESESS/CSWSS/epilepsy aphasia spectrum solely. The most common underlying pathway was channelopathy (N = 56). CONCLUSIONS: Our review suggests that genetic etiologies have a role to play in the occurrence of ESESS/CSWSS/epilepsy-aphasia spectrum. The common underlying pathway is channelopathy. Therefore we propose more genetic studies to be done for more discoveries which can pave a way for proper drug identification. We also suggest development of common cut-off value for spike-wave index to ensure common language among clinicians and researchers.


Asunto(s)
Canalopatías/genética , Sueño de Onda Lenta/genética , Estado Epiléptico/genética , Variaciones en el Número de Copia de ADN , Electroencefalografía , Humanos , Mutación
12.
Child Neurol Open ; 5: 2329048X18767738, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29687029

RESUMEN

Epilepsy of infancy with migrating focal seizures (EIMFS) is a rare type of early-onset epileptic encephalopathy that is characterized by refractory migratory multifocal seizures that migrate between hemispheres. Its etiology is not well known although it is postulated to occur due to channelopathy. The authors report the first case of EIMFS due to a de novo heterozygous mutation in exon 4(c.881C>T missense mutation, p.Ala294Val, NM_172107.2) in KCNQ2 gene which later evolved into infantile spasms. However, it is the second case of EIMFS with KCNQ2 mutation. He presented with multifocal migratory partial seizures which started at the age of 8 days. Electroencephalogram examination revealed multifocal interictal spikes that migrated from one hemisphere to the other within a seizure. It was intractable with antiepileptic drugs and adrenocorticotropic hormone. He later developed spasms from the age of 8 months. Consequently, our case supports the new association between EIMFS and KCNQ2 mutations. Moreover, it enriches the disease phenotype because of transformation.

13.
Zhongguo Dang Dai Er Ke Za Zhi ; 20(2): 154-157, 2018 Feb.
Artículo en Chino | MEDLINE | ID: mdl-29429466

RESUMEN

A 4-month-old girl developed convulsion in the neonatal period, which was focal motor seizures in the initial stage and later became spasm and tonic spasm. And the girl also had psychomotor retardation and recurrent pulmonary infection. Electroencephalography showed hypsarrhythmia, normal results were obtained from cranial magnetic resonance imaging, cerebrospinal fluid examination, and urine organic acid analysis, as well as the spectral analyses of blood ammonia, blood lactic acid, blood amino acids, and acylcarnitines. Gene detection revealed a de novo heterozygous mutation, c.607G>A (p.G203R) , in GNAO1. The girl was then diagnosed with GNAO1-associated early infantile epileptic encephalopathy (EIEE type 17). The seizures were well controlled by topiramate and vigabatrin, but there was no improvement in psychomotor development. She also suffered from recurrent pulmonary infection and died at the age of 12 months due to severe pneumonia. For children with unexplained early infantile epileptic encephalopathy, GNAO1 gene mutations should be considered and genetic tests should be performed as early as possible. Recurrent pulmonary infection should also be taken seriously.


Asunto(s)
Neumonía/complicaciones , Trastornos Psicomotores/etiología , Espasmos Infantiles/complicaciones , Femenino , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Humanos , Lactante , Mutación , Recurrencia , Espasmos Infantiles/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA