RESUMEN
Particulate matter (PM) and its harmful components are significant contributors to respiratory diseases and impaired lung function, especially in children. Club cell secretory protein (CC16) is a maker of lung epithelium or club cell injuries. To date, the relationship between metals related with PM and CC16 and lung function impairment has been overlooked in children. We enrolled 603 schoolchildren exposed to different levels of PM in China. We found per doubling increase, urinary thallium, and iron was associated with a 3.42 % (95 % CI: 0.01, 6.72) and 3.09 % (95 % CI: 0.55, 5.56) decrease of serum CC16, respectively, whereas urinary cadmium was associated with a 4.74 % (95 % CI: 1.29, 8.31) increase of serum CC16. The Bayesian kernel machine regression (BKMR) model confirmed these associations and showed a potential synergistic interaction between thallium and cadmium. Urinary metal mixtures were associated with lower CC16 when they were below the 35th percentile compared with their median. Serum CC16 mediated 11.47 % (95 % CI: 0.06, 45.00) of the association between urinary thallium and FEV1/FVC decline. The inverted U-shaped association with CC16 and the mediation role of CC16 on associations with lung function provide insight into the mechanisms underlying lung injury induced by metals related with PM.
RESUMEN
With the soaring use of rare earth elements (REEs) worldwidely in high-technology and clean energy industries, there were growing concerns for adverse health effect from the REEs exposure. However, there is a lack of biomonitoring research concerning both urine and blood in population with definite exposure. We performed a biomonitoring study that involved 103 REEs exposed males and 110 males as non-REEs exposed controls. We measured the levels of REEs in environment and urine and blood samples from participants, and explored the exposure-response relationship between REEs in environment and body fluids. The effects of exposure duration and smoking status on the internal exposure level of REEs were also investigated. The results showed environmental REEs level of exposure group was significantly higher than that of control group (range of geometric mean of exposure vs. control: 1.08-4.07 × 104 ng/m3 vs.
RESUMEN
Systematic studies on the associations between co-exposure to multiple metals and chronic kidney disease (CKD), as well as the underlying mechanisms, remain insufficient. This study aimed to provide a comprehensive perspective on the risk of CKD induced by multiple metal co-exposures through the integration of occupational epidemiology and adverse outcome pathway (AOP). The study participants included 401 male mine workers whose blood metal, ß2-microglobulin (ß2-MG), and cystatin C (Cys-C) levels were measured. Generalized linear models (GLMs), quantile g-computation models (qgcomp), least absolute shrinkage and selection operator (LASSO), and bayesian kernel machine regression (BKMR) were utilized to identify critical nephrotoxic metals. The mean concentrations of lead, cadmium, mercury, arsenic, and manganese were 191.93, 3.92, 4.66, 3.11, 11.35, and 16.33 µg/L, respectively. GLM, LASSO, qgcomp, and BKMR models consistently identified lead, cadmium, mercury, and arsenic as the primary contributors to kidney toxicity. Based on our epidemiological analysis, we used a computational toxicology method to construct a chemical-genetic-phenotype-disease network (CGPDN) from the Comparative Toxicogenomics Database (CTD), DisGeNET, and GeneCard databases, and further linked key events (KEs) related to kidney toxicity from the AOP-Wiki and PubMed databases. Finally, an AOP framework of multiple metals was constructed by integrating the common molecular initiating events (reactive oxygen species) and KEs (MAPK signaling pathway, oxidative stress, mitochondrial dysfunction, DNA damage, inflammation, hypertension, cell death, and kidney toxicity). This is the first AOP network to elucidate the internal association between multiple metal co-exposures and CKD, providing a crucial basis for the risk assessment of multiple metal co-exposures.
RESUMEN
Due to the complexity of environmental exposure factors and the low levels of exposure in the general population, identifying the key environmental factors associated with diabetes and understanding their potential mechanisms present significant challenges. This study aimed to identify key polycyclic aromatic hydrocarbons (PAHs) contributing to increased fasting blood glucose (FBG) concentrations and to explore their potential metabolic mechanisms. We recruited a highly PAH-exposed diesel engine exhaust testing population and healthy controls. Our findings found a positive association between FBG concentrations and PAH metabolites, identifying 1-OHNa, 2-OHPh, and 9-OHPh as major contributors to the rise in FBG concentrations induced by PAH mixtures. Specifically, each 10â¯% increase in 1-OHNa, 2-OHPh, and 9-OHPh concentrations led to increases in FBG concentrations of 0.201â¯%, 0.261â¯%, and 0.268â¯%, respectively. Targeted metabolomics analysis revealed significant alterations in metabolic pathways among those exposed to high levels of PAHs, including sirtuin signaling, asparagine metabolism, and proline metabolism pathway. Toxic function analysis highlighted differential metabolites involved in various dysglycemia-related conditions, such as cardiac arrhythmia and renal damage. Mediation analysis revealed that 2-aminooctanoic acid mediated the FBG elevation induced by 2-OHPh, while 2-hydroxyphenylacetic acid and hypoxanthine acted as partial suppressors. Notably, 2-aminooctanoic acid was identified as a crucial intermediary metabolic biomarker, mediating significant portions of the associations between the multiple different structures of OH-PAHs and elevated FBG concentrations, accounting for 16.73â¯%, 10.84â¯%, 10.00â¯%, and 11.90â¯% of these effects for 1-OHPyr, 2-OHFlu, the sum concentrations of 2- and 9-OHPh, and the sum concentrations of total OH-PAHs, respectively. Overall, our study explored the potential metabolic mechanisms underlying the elevated FBG induced by PAHs and identified 2-aminooctanoic acid as a pivotal metabolic biomarker, presenting a potential target for intervention.
Asunto(s)
Biomarcadores , Glucemia , Hidrocarburos Policíclicos Aromáticos , Emisiones de Vehículos , Hidrocarburos Policíclicos Aromáticos/toxicidad , Emisiones de Vehículos/toxicidad , Humanos , Biomarcadores/sangre , Glucemia/análisis , Masculino , China , Adulto , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Femenino , Exposición a Riesgos Ambientales , Metabolómica , Persona de Mediana Edad , Pueblos del Este de AsiaRESUMEN
BACKGROUND: Benzo(a)pyrene (B[a]P) is the most widely concerned polycyclic aromatic hydrocarbons (PAHs), which metabolizes benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE) in vivo to produce carcinogenic effect on the body. Currently, there is limited research on the role of the variation of metabolic enzymes in this process. METHODS: We carried out a study including 752 participants, measured the concentrations of 16 kinds PAHs in both particle and gaseous phases, urinary PAHs metabolites, leukocyte BPDE-DNA adduct and serum BPDE- Albumin (BPDE-Alb) adduct, and calculated daily intake dose (DID) to assess the cumulative exposure of PAHs. We conducted single nucleotide polymorphism sites (SNPs) of metabolic enzymes, explored the exposure-response relationship between the levels of exposure and BPDE adducts using multiple linear regression models. RESULT: Our results indicated that an interquartile range (IQR) increase in B[a]P, PAHs, BaPeq, 1-hydroxypyrene (1-OHP), 1-hydroxynaphthalene (1-OHNap) and 2-hydroxynaphthalene (2-OHNap) were associated with 26.53 %, 24.24 %, 28.15 %, 39.15 %, 12.85 % and 14.09 % increase in leukocyte BPDE-DNA adduct (all P < 0.05). However, there was no significant correlation between exposure with serum BPDE-Alb adduct (P > 0.05). Besides, we also found the polymorphism of CYP1A1(Gly45Asp), CYP2C9 (Ile359Leu), and UGT1A1(downstream) may affect BPDE adducts level. CONCLUSION: Our results indicated that leukocyte BPDE-DNA adduct could better reflect the exposure to PAHs. Furthermore, the polymorphism of CYP1A1, CYP2C9 and UGT1A1affected the content of BPDE adducts.
Asunto(s)
7,8-Dihidro-7,8-dihidroxibenzo(a)pireno 9,10-óxido , Aductos de ADN , Interacción Gen-Ambiente , Hidrocarburos Policíclicos Aromáticos , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , China , Citocromo P-450 CYP1A1/genética , Aductos de ADN/sangre , Pueblos del Este de Asia/genética , Exposición a Riesgos Ambientales , Glucuronosiltransferasa/genética , Leucocitos/metabolismo , Hidrocarburos Policíclicos Aromáticos/sangre , Polimorfismo de Nucleótido Simple , Citocromo P-450 CYP2C9/genéticaRESUMEN
Epidemiological findings have determined the linkage of fine particulate matter (PM2.5) and the morbidity of hypertension. However, the mode of action and specific contribution of PM2.5 component in the blood pressure elevation remain unclear. Platelets are critical for vascular homeostasis and thrombosis, which may be involved in the increase of blood pressure. Among 240 high-PM2.5 exposed, 318 low-PM2.5 exposed workers in a coking plant and 210 workers in the oxygen plant and cold-rolling mill enrolled in present study, both internal and external exposure characteristics were obtained, and we performed linear regression, adaptive elastic net regression, quantile g-computation and mediation analyses to analyze the relationship between urine metabolites of polycyclic aromatic hydrocarbons (PAHs) and metals fractions with platelets indices and blood pressure indicators. We found that PM2.5 exposure leads to increased systolic blood pressure (SBP) and pulse pressure (PP). Specifically, for every 10 µg/m3 increase in PM2.5, there was a 0.09 mmHg rise in PP. Additionally, one IQR increase in urinary 1-hydroxypyrene (1.06 µmol/mol creatinine) was associated with a 3.43 % elevation in PP. Similarly, an IQR increment of urine cobalt (2.31 µmol/mol creatinine) was associated with a separate 1.77 % and 4.71 % elevation of SBP and PP. Notably, platelet-to-lymphocyte ratio (PLR) played a mediating role in the elevation of SBP and PP induced by cobalt. Our multi-pollutants results showed that PAHs and cobalt were deleterious contributors to the elevated blood pressure. These findings deepen our understanding of the cardiovascular effects associated with PM2.5 constituents, highlighting the importance of increased vigilance in monitoring and controlling the harmful components in PM2.5.
Asunto(s)
Contaminantes Atmosféricos , Presión Sanguínea , Material Particulado , Hidrocarburos Policíclicos Aromáticos , Material Particulado/análisis , Humanos , Presión Sanguínea/efectos de los fármacos , Masculino , Plaquetas/efectos de los fármacos , Adulto , Metales/orina , Femenino , Exposición Profesional/estadística & datos numéricos , Persona de Mediana Edad , Hipertensión/epidemiologíaRESUMEN
The main components of particulate matter (PM) had been reported to change DNA methylation levels. However, the mixed effect of PM and its constituents on DNA methylation and the underlying mechanism in children has not been well characterized. To investigate the association between single or mixture exposures and global DNA methylation or DNA methyltransferases (DNMTs), 273 children were recruited (110 in low-exposed area and 163 in high-exposed area) in China. Serum benzo[a]pyridin-7,8-dihydroglycol-9, 10-epoxide (BPDE)-albumin adduct and urinary metals were determined as exposure markers. The global DNA methylation (% 5mC) and the mRNA expression of DNMT1, and DNMT3A were measured. The linear regression, quantile-based g-computation (QGC), and mediation analyses were performed to investigate the effects of individual and mixture exposure. We found that significantly lower levels of % 5mC (P < 0.001) and the mRNA expression of DNMT3A in high-PM exposed group (P = 0.031). After adjustment for age, gender, BMI z-score, detecting status of urinary cotinine, serum folate, and white blood cells, urinary arsenic (As) was negatively correlated with the % 5mC. One IQR increase in urinary As (19.97 µmol/mol creatinine) was associated with a 11.06 % decrease in % 5mC (P = 0.026). Serum BPDE-albumin adduct and urinary cadmium (Cd) were negatively correlated with the levels of DNMT1 and DNMT3A (P < 0.05). Mixture exposure was negatively associated with expression of DNMT3A in QGC analysis (ß: -0.19, P < 0.001). Mixture exposure was significantly associated with decreased % 5mC in the children with non-detected cotinine or normal serum folate (P < 0.05), which the most contributors were PAHs and As. The mediated effect of hypomethylation through DNMT1 or DNMT3A pathway was not observed. Our findings indicated that individual and mixture exposure PAHs and metal components had negative associations with global DNA methylation and decreased DNMT3A expression significantly in school-age individuals.
Asunto(s)
Metilación de ADN , Hidrocarburos Policíclicos Aromáticos , Niño , Humanos , 7,8-Dihidro-7,8-dihidroxibenzo(a)pireno 9,10-óxido , Cotinina , Material Particulado , Polvo , ADN , Albúminas/metabolismo , Estudiantes , Ácido Fólico , ARN Mensajero/metabolismoRESUMEN
Trichloroethylene (TCE), extensively used as an organic solvent in various industrial applications, has been identified as a causative factor in inducing hypersensitivity syndrome (THS). Currently, there is no specific treatment for THS, and most patients experience serious adverse outcomes due to extensive skin damage leading to severe infection. However, the pathogenesis of THS-associated skin damage remains unclear. This study aims to elucidate the mechanism underlying skin damage from the perspective of intercellular communication and gap junctions in THS. Our results verified that hyperactivation of connexin43 gap junctions, caused by the aberrantly elevated expression of connexin43, triggers a bystander effect that promotes apoptosis and inflammation in THS via the TNF-TNFRSF1B and mitochondria-associated pathways. Additionally, we identified the gap junction inhibitor Carbenoxolone disodium (CBX) as a promising agent for the treatment of skin damage in THS. CBX protects against inflammatory cell infiltration in the skin and decreases immune cell imbalance in the peripheral blood of THS mice. Furthermore, CBX reduces connexin43 expression, apoptosis and inflammation in THS mice. The study reveals new insights into the mechanisms underlying TCE-induced skin damage, offering a potential treatment strategy for the development of effective therapies targeting severe dermatitis induced by chemical exposure.
Asunto(s)
Tricloroetileno , Humanos , Animales , Ratones , Tricloroetileno/toxicidad , Tricloroetileno/metabolismo , Conexina 43/genética , Conexina 43/metabolismo , Solventes , Uniones Comunicantes/metabolismo , Inflamación/metabolismoRESUMEN
Trichloroethylene (TCE)-induced hypersensitivity syndrome (THS) has been a concern for many researchers in the field of environmental and occupational health. Currently, there is no specific treatment for THS, leaving patients to contend with severe infections arising from extensive skin lesions, consequently leading to serious adverse effects. However, the pathogenesis of severe skin damage in THS remains unclear. This study aims to investigate the specific danger signals and mechanisms underlying skin damage in THS through in vivo and in vitro experiments. We identified that cell supernatant containing 15â¯kDa granulysin (GNLY), released from activated CD3-CD56+NK cells or CD3+CD56+NKT cells in PBMC induced by TCE or its metabolite, promoted apoptosis in HaCaT cells. The apoptosis level decreased upon neutralization of GNLY in the supernatant by a GNLY-neutralizing antibody in HaCaT cells. Subcutaneous injection of recombinant 15â¯kDa GNLY exacerbated skin damage in the THS mouse model and better mimicked patients' disease states. Recombinant 15â¯kDa GNLY could directly induce cellular communication disorders, inflammation, and apoptosis in HaCaT cells. In addition to its cytotoxic effects, GNLY released from TCE-activated NK cells and NKT cells or synthesized GNLY alone could induce aberrant expression of the E3 ubiquitin ligase PDZRN3, causing dysregulation of the ubiquitination of the cell itself. Consequently, this resulted in the persistent opening of gap junctions composed of connexin43, thereby intensifying cellular inflammation and apoptosis through the "bystander effect". This study provides experimental evidence elucidating the mechanisms of THS skin damage and offers a novel theoretical foundation for the development of effective therapies targeting severe dermatitis induced by chemicals or drugs.
Asunto(s)
Tricloroetileno , Ubiquitina-Proteína Ligasas , Animales , Ratones , Conexina 43/metabolismo , Hipersensibilidad/genética , Hipersensibilidad/metabolismo , Inflamación/patología , Células Asesinas Naturales , Leucocitos Mononucleares , Enfermedades de la Piel/inducido químicamente , Enfermedades de la Piel/genética , Tricloroetileno/toxicidad , Ubiquitina-Proteína Ligasas/metabolismo , HumanosRESUMEN
Trichloroethylene-induced hypersensitivity dermatitis (TIHD) is a delayed hypersensitivity response that is affected by genetic and environmental factors. Occupational exposure to trichloroethylene (TCE) enhances antigen presentation, leading to hypersensitivity in workers with the HLA-B* 13:01 allele. Several studies have observed the activation of herpesviruses, such as EpsteinBarr virus (EBV), in TIHD patients. However, the underlying mechanisms remain unclear. Toll-like receptors (TLRs) play a pivotal role in the pathogenesis of herpesvirus infection. This study aimed to explore whether TLRs serve as a shared mechanism for both herpesvirus and allergenic chemicals. In this study, HLA-B* 13:01-transfected Hmy2. A C1R cell model was constructed, and cells were treated with TCOH and EBV to explore the possible mechanisms. We established a mouse model of dermatitis and used a TLR4 agonist to verify the effect of herpesvirus on TIHD. The results showed that EBV and TCOH synergistically enhance antigen processing and presentation via the TLR2/NF-κB axis. Furthermore, TLR4 agonist further aggravated skin lesions and liver damage in TCE-sensitized mice through TLR4/NF-κB axis-mediated antigen processing and presentation. Together, this study indicates that viral infection further aggravates the inflammatory response in TIHD based on environment-gene interactions.
Asunto(s)
Dermatitis , Herpesviridae , Hipersensibilidad , Tricloroetileno , Humanos , Ratones , Animales , FN-kappa B , Tricloroetileno/toxicidad , Presentación de Antígeno , Receptor Toll-Like 4/genética , Antígenos HLA-B/genéticaRESUMEN
Diesel exhaust has long been of health concern due to established toxicity including carcinogenicity in humans. However, the precise components of diesel engine emissions that drive carcinogenesis are still unclear. Limited work has suggested that nitrated polycyclic aromatic hydrocarbons (NPAHs) such as 1-nitropyrene and 2-nitrofluorene may be more abundant in diesel exhaust. The present study aimed to examine whether urinary amino metabolites of these NPAHs were associated with high levels of diesel engine emissions and urinary mutagenicity in a group of highly exposed workers including both smokers and nonsmokers. Spot urine samples were collected immediately following a standard work shift from each of the 54 diesel engine testers and 55 non-tester controls for the analysis of five amino metabolites of NPAHs, and cotinine (a biomarker of tobacco smoke exposure) using liquid chromatography-mass spectrometry. An overnight urine sample was collected in a subgroup of non-smoking participants for mutagenicity analysis using strain YG1041 in the Salmonella (Ames) mutagenicity assay. Personal exposure to fine particles (PM2.5) and more-diesel-specific constituents (elemental carbon and soot) was assessed for the engine testers by measuring breathing-zone concentrations repeatedly over several full work shifts. Results showed that it was 12.8 times more likely to detect 1-aminopyrene and 2.9 times more likely to detect 2-aminofluorene in the engine testers than in unexposed controls. Urinary concentrations of 1-aminopyrene were significantly higher in engine testers (p < 0.001), and strongly correlated with soot and elemental carbon exposure as well as mutagenicity tested in strain YG1041 with metabolic activation (p < 0.001). Smoking did not affect 1-aminopyrene concentrations and 1-aminopyrene relationships with diesel exposure. In contrast, both engine emissions and smoking affected 2-aminofluorene concentrations. The results confirm that urinary 1-aminopyrene may serve as an exposure biomarker for diesel engine emissions and associated mutagenicity.
Asunto(s)
Mutágenos , Hidrocarburos Policíclicos Aromáticos , Humanos , Mutágenos/toxicidad , Emisiones de Vehículos/toxicidad , Emisiones de Vehículos/análisis , Hollín/análisis , Hidrocarburos Policíclicos Aromáticos/orina , Nitratos/análisis , Biomarcadores/orinaRESUMEN
PIG-A gene mutations can be detected in humans, and PIG-A assays can potentially predict the risk of exposure to carcinogens. However, extensive, population-based studies to validate this are lacking. We studied a cohort of occupational coke oven workers with chronic high exposure to carcinogenic polycyclic aromatic hydrocarbons, which are well-studied genotoxins classified by the IARC as carcinogenic to humans. Peripheral blood erythrocytes of workers were assessed for gene mutations using a PIG-A assay, and chromosome damage using the cytokinesis-block micronucleus test with lymphocytes. Two sample populations from a non-industrialized city and new employees in industrial plants were selected as controls. We observed a significantly elevated PIG-A mutation frequency (MF) and increased frequencies of micronuclei (MN) and nuclear buds (NBUDs) in coke oven workers, compared with levels in the control groups. We found that the coke oven workers with different lengths of service had a relatively high mutation frequency. Overall, the study findings showed that occupational exposure of coke oven workers increases the genetic damage and the PIG-A MF could be a potential biomarker for risk assessment of carcinogen exposure.
Asunto(s)
Coque , Exposición Profesional , Hidrocarburos Policíclicos Aromáticos , Humanos , Biomarcadores , Coque/toxicidad , Daño del ADN , Mutágenos/toxicidad , Mutación , Exposición Profesional/efectos adversos , Hidrocarburos Policíclicos Aromáticos/toxicidad , Pirenos/toxicidadRESUMEN
The ribosomal DNA (rDNA) plays a crucial role in maintaining genome stability. So far, alterations of rDNA from airborne pollutants exposure remain unclear. Nasal epithelial cells are the earliest respiratory barrier, which has an accessible surrogate for evaluating respiratory impairment. We developed a mixture-centered biomarkers study integrated epidemiological and biological evidence among 768 subjects, a mixture of polycyclic aromatic hydrocarbons (PAHs) and metals. We identified the mixed exposure of PAHs and metals by environmental and biological monitoring, selected urinary 8-hydroxy-2'-deoxyguanosine as DNA oxidative stress marker, and measured their rDNA copy number (rDNA CN) in nasal epithelial cells. We performed linear regression, adaptive elastic net regression, BKMR, and mediation analyses to assess the direct and indirect effects. We found a 10% elevation in urinary 1-hydroxypyrene was correlated with a separate 0.31% and 0.82% amplification of nasal 5S and 45S rDNA CN, respectively (all P < 0.05). A 10% increment of urine nickel was associated with a separate 0.37% and 1.18% elevation of nasal 5S and 45S rDNA CN, respectively (all P < 0.05). BKMR results also confirmed our findings of PAHs and nickel. Our findings suggested that DNA oxidative stress might trigger rDNA instability induced by inhaled PAHs and metals.
Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Humanos , Hidrocarburos Policíclicos Aromáticos/toxicidad , Hidrocarburos Policíclicos Aromáticos/análisis , ADN Ribosómico , Níquel , Variaciones en el Número de Copia de ADN , 8-Hidroxi-2'-Desoxicoguanosina , Metales/toxicidad , Estrés Oxidativo , BiomarcadoresRESUMEN
Antimony (Sb) poses a significant threat to human health due to sharp increases in its exploitation and application globally, but few studies have explored the pathophysiological mechanisms of acute hepatotoxicity induced by Sb exposure. We established an in vivo model to comprehensively explore the endogenous mechanisms underlying liver injury induced by short-term Sb exposure. Adult female and male Sprague-Dawley rats were orally administrated various concentrations of potassium antimony tartrate for 28 days. After exposure, the serum Sb concentration, liver-to-body weight ratio, and serum glucose levels significantly increased in a dose-dependent manner. Body weight gain and serum concentrations of biomarkers of hepatic injury (e.g., total cholesterol, total protein, alkaline phosphatase, and the aspartate aminotransferase/alanine aminotransferase ratio) decreased with increasing Sb exposure. Through integrative non-targeted metabolome and lipidome analyses, alanine, aspartate, and glutamate metabolism; phosphatidylcholines; sphingomyelins; and phosphatidylinositols were the most significantly affected pathways in female and male rats exposed to Sb. Additionally, correlation analysis showed that the concentrations of certain metabolites and lipids (e.g., deoxycholic acid, N-methylproline, palmitoylcarnitine, glycerophospholipids, sphingomyelins, and glycerol) were significantly associated with hepatic injury biomarkers, indicating that metabolic remodeling may be involved in apical hepatotoxicity. Our study demonstrated that short-term exposure to Sb induces hepatotoxicity, possibly through a glycolipid metabolism disorder, providing an important reference for the health risks of Sb pollution.
Asunto(s)
Antimonio , Enfermedad Hepática Inducida por Sustancias y Drogas , Humanos , Ratas , Masculino , Femenino , Animales , Ratas Sprague-Dawley , Antimonio/toxicidad , Esfingomielinas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Biomarcadores/metabolismo , Peso Corporal , Hígado/metabolismoRESUMEN
BACKGROUND: We previously found that occupational exposure to diesel engine exhaust (DEE) was associated with alterations to 19 biomarkers that potentially reflect the mechanisms of carcinogenesis. Whether DEE is associated with biological alterations at concentrations under existing or recommended occupational exposure limits (OELs) is unclear. METHODS: In a cross-sectional study of 54 factory workers exposed long-term to DEE and 55 unexposed controls, we reanalysed the 19 previously identified biomarkers. Multivariable linear regression was used to compare biomarker levels between DEE-exposed versus unexposed subjects and to assess elemental carbon (EC) exposure-response relationships, adjusted for age and smoking status. We analysed each biomarker at EC concentrations below the US Mine Safety and Health Administration (MSHA) OEL (<106 µg/m3), below the European Union (EU) OEL (<50 µg/m3) and below the American Conference of Governmental Industrial Hygienists (ACGIH) recommendation (<20 µg/m3). RESULTS: Below the MSHA OEL, 17 biomarkers were altered between DEE-exposed workers and unexposed controls. Below the EU OEL, DEE-exposed workers had elevated lymphocytes (p=9E-03, false discovery rate (FDR)=0.04), CD4+ count (p=0.02, FDR=0.05), CD8+ count (p=5E-03, FDR=0.03) and miR-92a-3p (p=0.02, FDR=0.05), and nasal turbinate gene expression (first principal component: p=1E-06, FDR=2E-05), as well as decreased C-reactive protein (p=0.02, FDR=0.05), macrophage inflammatory protein-1ß (p=0.04, FDR=0.09), miR-423-3p (p=0.04, FDR=0.09) and miR-122-5p (p=2E-03, FDR=0.02). Even at EC concentrations under the ACGIH recommendation, we found some evidence of exposure-response relationships for miR-423-3p (ptrend=0.01, FDR=0.19) and gene expression (ptrend=0.02, FDR=0.19). CONCLUSIONS: DEE exposure under existing or recommended OELs may be associated with biomarkers reflective of cancer-related processes, including inflammatory/immune response.
Asunto(s)
Contaminantes Ocupacionales del Aire , MicroARNs , Exposición Profesional , Humanos , Emisiones de Vehículos/análisis , Contaminantes Ocupacionales del Aire/efectos adversos , Contaminantes Ocupacionales del Aire/análisis , Estudios Transversales , Unión Europea , Exposición Profesional/efectos adversos , Exposición Profesional/análisis , Biomarcadores/análisisRESUMEN
BACKGROUND: Early life is a susceptible period of air pollution-related adverse health effects. Hypertension in children might be life-threatening without prevention or treatment. Nevertheless, the causative association between environmental factors and childhood hypertension was limited. In the light of particulate matter (PM) as an environmental risk factor for cardiovascular diseases, this study investigated the association of pre- and postnatal PM exposure with blood pressure (BP) and hypertension among children and adolescents. METHOD: Four electronic databases were searched for related epidemiological studies published up to September 13, 2022. Stata 14.0 was applied to examine the heterogeneity among the studies and evaluate the combined effect sizes per 10 µg/m3 increase of PM by selecting the corresponding models. Besides, subgroup analysis, sensitivity analysis, and publication bias test were also conducted. RESULTS: Prenatal PM2.5 exposure was correlated with increased diastolic blood pressure (DBP) in offspring [1.14 mmHg (95% CI: 0.12, 2.17)]. For short-term postnatal exposure effects, PM2.5 (7-day average) was significantly associated with systolic blood pressure (SBP) [0.20 mmHg (95% CI: 0.16, 0.23)] and DBP [0.49 mmHg (95% CI: 0.45, 0.53)]; and also, PM10 (7-day average) was significantly associated with SBP [0.14 mmHg (95% CI: 0.12, 0.16)]. For long-term postnatal exposure effects, positive associations were manifested in SBP with PM2.5 [ß = 0.44, 95% CI: 0.40, 0.48] and PM10 [ß = 0.35, 95% CI: 0.19, 0.51]; DBP with PM1 [ß = 0.45, 95% CI: 0.42, 0.49], PM2.5 [ß = 0.31, 95% CI: 0.27, 0.35] and PM10 [ß = 0.32, 95% CI: 0.19, 0.45]; and hypertension with PM1 [OR = 1.43, 95% CI: 1.40, 1.46], PM2.5 [OR = 1.65, 95% CI: 1.29, 2.11] and PM10 [OR = 1.26, 95% CI: 1.09, 1.45]. CONCLUSION: Both prenatal and postnatal exposure to PM can increase BP, contributing to a higher prevalence of hypertension in children and adolescents.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Hipertensión , Femenino , Embarazo , Humanos , Niño , Adolescente , Material Particulado/toxicidad , Material Particulado/análisis , Presión Sanguínea , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Hipertensión/inducido químicamente , Hipertensión/epidemiología , Contaminación del Aire/análisisRESUMEN
Diesel engine exhaust (DEE) is an established lung carcinogen, but the biological mechanisms of diesel-induced lung carcinogenesis are not well understood. MicroRNAs (miRNAs) are small noncoding RNAs that play a potentially important role in regulating gene expression related to lung cancer. We conducted a cross-sectional molecular epidemiology study to evaluate whether serum levels of miRNAs are altered in healthy workers occupationally exposed to DEE compared to unexposed controls. We conducted a two-stage study, first measuring 405 miRNAs in a pilot study of six DEE-exposed workers exposed and six controls. In the second stage, 44 selected miRNAs were measured using the Fireplex circulating miRNA assay that profiles miRNAs directly from biofluids of 45 workers exposed to a range of DEE (Elemental Carbon (EC), median, range: 47.7, 6.1-79.7 µg/m3 ) and 46 controls. The relationship between exposure to DEE and EC with miRNA levels was analyzed using linear regression adjusted for potential confounders. Serum levels of four miRNAs were significantly lower (miR-191-5p, miR-93-5p, miR-423-3p, miR-122-5p) and one miRNA was significantly higher (miR-92a-3p) in DEE exposed workers compared to controls. Of these miRNAs, miR-191-5p (ptrend = .001, FDR = 0.04) and miR-93-5p (ptrend = .009, FDR = 0.18) showed evidence of an inverse exposure-response with increasing EC levels. Our findings suggest that occupational exposure to DEE may affect circulating miRNAs implicated in biological processes related to carcinogenesis, including immune function.
Asunto(s)
Contaminantes Ocupacionales del Aire , MicroARNs , Exposición Profesional , Humanos , MicroARNs/genética , Contaminantes Ocupacionales del Aire/toxicidad , Contaminantes Ocupacionales del Aire/análisis , Emisiones de Vehículos/toxicidad , Emisiones de Vehículos/análisis , Epidemiología Molecular , Estudios Transversales , Proyectos Piloto , Exposición Profesional/efectos adversos , Exposición Profesional/análisis , CarcinogénesisRESUMEN
Trichloroethanol (TCOH), as a metabolite of trichloroethylene, has sensitization in the pathogenesis of trichloroethylene-induced hypersensitivity dermatitis (TIHD) which the human leukocyte antigen (HLA)-B∗13:01 gene is strongly associated with it. However, it is still obscure how TCOH participates in the pathogenesis of TIHD. Here, we demonstrate that TLR2 and TLR4 signaling through MyD88 and TRAF6-dependent pathway could activate NF-κB by promoting degradation of the inhibitor IκB-α to stimulate the process of NF-κB nuclear translocation. Besides, the crucial molecules of antigen processing and presentation, including TAP1, LMP2, LMP7, and HLA-B* 13:01, were all enhanced and the abundance of HLA-B* 13:01 on the surface of CIR-B* 13:01 cells was also up-regulated with the TCOH concentration increasing. Notably, we used 50 µM pyrrolidinedithiocarbamate (ammonium) to effectively inhibit the activation of NF-κB, which could effectively reverse the stimulation of antigen processing and presentation in TCOH-treated CIR-B* 13:01 cells. Taken together, we speculated that TCOH could promote the abundance of HLA complex on the antigen-presenting cells via TLR2 and TLR4/NF-κB to induce the severe reactivation of T lymphocytes, leading to the extreme immune response.
Asunto(s)
FN-kappa B , Tricloroetileno , Humanos , FN-kappa B/metabolismo , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Presentación de Antígeno , Células Presentadoras de Antígenos/metabolismo , Antígenos HLA-BRESUMEN
Compared with the T-cell potential of particulate matter (PM) in animal studies, comprehensive evaluation on the impairments of T-cell response and exposure-response from PM and its components in human population is limited. There were 768 participants in this study. We measured environmental PM and its polycyclic aromatic hydrocarbons (PAHs) and metals and urinary metabolite levels of PAHs and metals among population. T lymphocyte and its subpopulation (CD4+ T cells and CD8+ T cells) and the expressions of T-bet, GATA3, RORγt, and FoxP3 were measured. We explored the exposure-response of PM compositions by principal component analysis and mode of action by mediation analysis. There was a significant decreasing trend for T lymphocytes and the levels of T-bet and GATA3 with increased PM levels. Generally, there was a negative correlation between PM, urinary 1-hydroxypyrene, urinary metals, and the levels of T-bet and GATA3 expression. Additionally, CD4+ T lymphocytes were found to mediate the associations of PM2.5 with T-bet expression. PM and its bound PAHs and metals could induce immune impairments by altering the T lymphocytes and genes of T-bet and GATA3.
Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Policíclicos Aromáticos , Animales , Humanos , Material Particulado/análisis , Linfocitos T CD8-positivos/química , Metales/análisis , Biomarcadores/análisis , Contaminantes Atmosféricos/análisisRESUMEN
This paper investigates the payment scheme and forecast information sharing issues in the express delivery logistics with the high-speed railway. The HSR carriers need to coordinate the transportation capacity between passenger and freight. It is widely recognized that the advance payment scheme (APS) using as deposit is a beneficial way for the HSR carriers to make decisions on the transportation capacity preserved for express delivery. However, the express service providers, who possess private forecast information of express delivery demand, may share inaccurate information with the HSR carriers to acquire sufficient preserved transportation capacity. This paper discusses what payment scheme is preferred by the HSR carrier, the express service provider through discussing the deposit decisions with or without forecast information sharing. We show that sharing demand forecast information can reduce the prereserved capacity and increase the profits of the HSR carrier. With the delayed payment scheme (DPS), the express service provider has no motivation to share the information; while with the APS, the HSR carrier can reasonably choose the deposit to encourage the express service provider to share the demand information. Our analysis also shows that the HSR carrier's profits with the APS is restricted by the investment returns and the express service provider's information sharing decisions. We also analyze the value range of the deposit, which is a proportion of the overall payment, that allows both the HSR carrier and the express service provider to prefer the APS, as well as to encourage the express service provider to share the demand information.