Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38888297

RESUMEN

Exploratory cognitive diagnosis models have been widely used in psychology, education and other fields. This paper focuses on determining the number of attributes in a widely used cognitive diagnosis model, the GDINA model. Under some conditions of cognitive diagnosis models, we prove that there exists a special structure for the covariance matrix of observed data. Due to the special structure of the covariance matrix, an estimator based on eigen-decomposition is proposed for the number of attributes for the GDINA model. The performance of the proposed estimator is verified by simulation studies. Finally, the proposed estimator is applied to two real data sets Examination for the Certificate of Proficiency in English (ECPE) and Big Five Personality (BFP).

2.
Sci Transl Med ; 15(713): eabo6889, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37703352

RESUMEN

Tau pathogenesis is a hallmark of many neurodegenerative diseases, including Alzheimer's disease (AD). Although the events leading to initial tau misfolding and subsequent tau spreading in patient brains are largely unknown, traumatic brain injury (TBI) may be a risk factor for tau-mediated neurodegeneration. Using a repetitive TBI (rTBI) paradigm, we report that rTBI induced somatic accumulation of phosphorylated and misfolded tau, as well as neurodegeneration across multiple brain areas in 7-month-old tau transgenic PS19 mice but not wild-type (WT) mice. rTBI accelerated somatic tau pathology in younger PS19 mice and WT mice only after inoculation with tau preformed fibrils and AD brain-derived pathological tau (AD-tau), respectively, suggesting that tau seeds are needed for rTBI-induced somatic tau pathology. rTBI further disrupted axonal microtubules and induced punctate tau and TAR DNA binding protein 43 (TDP-43) pathology in the optic tracts of WT mice. These changes in the optic tract were associated with a decline of visual function. Treatment with a brain-penetrant microtubule-stabilizing molecule reduced rTBI-induced tau, TDP-43 pathogenesis, and neurodegeneration in the optic tract as well as visual dysfunction. Treatment with the microtubule stabilizer also alleviated rTBI-induced tau pathology in the cortices of AD-tau-inoculated WT mice. These results indicate that rTBI facilitates abnormal microtubule organization, pathological tau formation, and neurodegeneration and suggest microtubule stabilization as a potential therapeutic avenue for TBI-induced neurodegeneration.


Asunto(s)
Enfermedad de Alzheimer , Lesiones Traumáticas del Encéfalo , Animales , Ratones , Microtúbulos , Proteínas de Unión al ADN , Encéfalo , Modelos Animales de Enfermedad , Excipientes , Ratones Transgénicos
3.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 34(8): 1052-1058, 2020 Aug 15.
Artículo en Chino | MEDLINE | ID: mdl-32794678

RESUMEN

OBJECTIVE: To investigate the effect of small interfering RNA (siRNA) lentivirus-mediated silencing of P75 neurotrophin receptor (P75NTR) gene on osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) in rats. METHODS: Three lentivirus-mediated P75NTR gene siRNA sequences (P75NTR-siRNA-1, 2, 3) and negative control (NC)-siRNA were designed and transfected into the 3rd generation Sprague Dawley (SD) rat BMSCs. The cells morphological changes were observed under an inverted microscope, and the expressions of P75NTR gene and protein in cells were detected by real-time fluorescence quantitative PCR and Western blot. Then the best silencing P75NTR-siRNA for subsequent osteogenic differentiation experiments was screened out. The 3rd generation SD rat BMSCs were randomly divided into experimental group, negative control group, and blank control group (normal BMSCs). The BMSCs of negative control group and experimental group were transfected with NC-siRNA and the selected P75NTR-siRNA lentiviral vector, respectively. The cells of each group were cultured by osteogenic induction. The expressions of osteogenic related proteins [osteocalcin (OCN) and Runx related transcription factor 2 (Runx2)] were detected by Western blot; the collagen type Ⅰ expression was observed by immunohistochemical staining; the osteogenesis of BMSCs was observed by alkaline phosphatase (ALP) detection and alizarin red staining. RESULTS: After lentivirus-mediated P75NTR transfected into BMSCs, the expressions of P75NTR mRNA and protein significantly reduced ( P<0.05), and the best silencing P75NTR-siRNA was P75NTR-siRNA-3. After P75NTR gene was silenced, MTT test showed that the cell proliferation in the experimental group was significantly faster than those in the two control groups ( P<0.05). After osteogenic induction, the relative expressions of OCN and Runx2 proteins, collagen type Ⅰ expression, and ALP activity were significantly higher in the experimental group than in the two control groups, the differences were significant ( P<0.05). With the prolongation of osteogenic induction, the mineralized nodules in the experimental group gradually increased. CONCLUSION: Silencing the P75NTR gene with siRNA lentivirus can promote the osteogenic differentiation of rat BMSCs and provide a new idea for the treatment of bone defects.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Animales , Células de la Médula Ósea , Diferenciación Celular , Células Cultivadas , Lentivirus , Ratas , Ratas Sprague-Dawley , Receptor de Factor de Crecimiento Nervioso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA